[PDF] [PDF] The Numerical Solution of the Time-Dependent Nernst - CORE

equations can be set out When there are several ion species, one muststill solve a transcendental equation to relate ion concentrations and the electrical field, 



Previous PDF Next PDF





[PDF] 185 Since Goldman [1] published his paper in 1943, the constant

constant field equation holds if the uniform charge density in the mem- brane is sufficient to exclude any coions from the membrane Recently Arndt et al



[PDF] The Hodgkin–Huxley Equations

Goldman, Hodgkin, and Katz came up with this simplified model called the constant-field equation They assumed (1) the electric field across the lipid membrane is constant, (2) the Nernst–Planck equation holds within the membrane, and (3) the ions all move independently



Chapter VI DETERMINATION OF RESTING POTENTIAL A Modified

constant field equation eq 2 where PK , PNa , and P C1 are the membrane permeabilities for K+, Na+, and CI-, respectively The PK [Kli product, for example, is 



[PDF] The Numerical Solution of the Time-Dependent Nernst - CORE

equations can be set out When there are several ion species, one muststill solve a transcendental equation to relate ion concentrations and the electrical field, 



Transport Equations and Criteria for Active Transport Department of

goes to the Nernst equation for that ion Figure 8a shows the voltage and concen- tration profile through the membrane un- der the constant field assumption



[PDF] Application of the Poisson–Nernst–Planck equations to the

Abstract The Poisson–Nernst–Planck (PNP) equations are applied to model the migration test and to approximate the electric field by a constant equal to the



pdf The enduring legacy of the “constant-field equation” in

Nernst–Planck (NP) equation (Nernst 1888; Planck 1890) The NP equation describes the contribution of concentration and voltage gradients to the current density carried by single ionic species Today we know it as the constant-field current equation (Eq 1): I i i= P_____z 2 i F 2 V RT i(Cin e z i FV/RT ? _____i out ez i FV/RT ? 1



Images

to rearrange the equation you get: G Where: 1 R = the gas constant (a measure of the energy contained in a substance [per Kelvin per mole]) 2 T = Absolute temperature in degrees Kelvin 3 z = the valance of the ion (give examples) 4 F = Faraday's constant (a measure of electrical charge per mole of substance = 96500 coulombs) 5

[PDF] the lancet food in the anthropocene pdf

[PDF] the milk audiobook

[PDF] the milk pdf

[PDF] the milk read online

[PDF] the milk reading level

[PDF] the price of a pair of shoes is 28

[PDF] the resulting solution will be

[PDF] the state of washington uses 4 levels of english language proficiency

[PDF] the voice france saison 1

[PDF] therapeutic exercise pdf download

[PDF] thirty years war essay

[PDF] threat protection (24x7 forticare plus application control ips av)

[PDF] time complexity of lu decomposition

[PDF] tipping customs in paris france

[PDF] together logo

THENUMERICALSOLUTIONOF

THETIME-DEPENDENT

NERNST-PLANCKEQUATIONS

H.COHENandJ.W.COOLEY

1.INTRODUCTION

145brought to you by COREView metadata, citation and similar papers at core.ac.ukprovided by Elsevier - Publisher Connector

theseresultsinthespiritofprovidingamorecompleteviewof thetime-dependent characteroftheNernst-Plancksystem. canbedonenumericallywithoutdifficulty. themembraneduringthistransition? inAppendix1): i[Fd(1.1) (1.2) ax acj*=--a$-(1.3)ata e47O2(1.4)

BIOPHYsIcALJOURNALVOLUME51965146

renttobe

I=F(J-E-5)+E2atIO"M(1.5)

thelasttermbeingthedisplacementcurrent.2 Using

U=,V=,zj(1.6)

ii e109aaE=ZFE(U+P)+RTc(U-F).(1.7)4762aiax i=_[i/axcC*EJ(1.1)'

E=-d(1.2)'ax

dCji_ac(.3)atax axp=S(C4-Cj)=-C-(1.4)' aEI-E(U+V)+a(UV)(1.7) =T.(1.8) where

T=E109

47CrFC(O)+/7cj

isanelectricrelaxationtimeand

Td=12pcI0RTIF

X=1.65x10-10.

2.THENUMERICALRESULTSFORK=0

C-=Z,C,++YjC-,thenforK=0

C=[C(1)-C(O)]x+C(O)(2.1)

E=GIC(2.2)

(x)=C(1)'C(O)nC(O)(2.3)

BIOPHYSICALJoURNALVOLUME51965148

E(x,t)=+dx()(2.4)u+vU+V

UandVaretheweightedmobilities

U=12N,+CN,++IAH+CH+(2.5)

V=1CI-Ccl-

inEisthenfoundfromequation(2.4)tobe

AIE(x,+0)-E(x,-0)=+;,(2.6)

whereU+Vhavethesteady-statevaluesatt=-0. -5

3fO1tg|JItI00.040n0AIQ

FiGuRElbConcentrationsforI(-O)x10-cm

=0.5,I(+O)=0amp/cmi,tinseconds.

Thesecondtermofequation(2.4),

a(U-V)El(x,t)=dx(2.7)U+v,(27

BIoPHYsIcALJOURNALVOLUME51965lSO

j326- 24\
.22- I-

54£

0.2~0.40.6.0

22
16 14120
M 10 al%6 4 2 0

Oo.t0.4M0.

XloomID

_,0*0.6.~~~~~~~~~~~I1o lSl obtainedbyintegratingequation(2.4),is -*(t)=I-R(t)+'I'mf(t)(2.8) where

R(t)=1dx(2.9)

'I'emf(t)=fEl(x,t)dx.(2.10) .14 tel~~ ~ ~~~~ma

0020.40A0iLW

BIOPHYSICALJOURNALVOLUMES1965152

uI23u tsec.

20temfi-emf

0- -20_ -40 -60 -80 100_

120_-*,

140
160_
180_
0.5

0i23012

tsec.I2FiGuRE5Membranevoltage-I',and

FIGURE6Membranevoltage-I',and'Irt

=f(U.-V.)/(U+V)dxinmillivolts,re- sponsetostep-functioncurrentI=0,-0.5,0 amp/cm2. 360
340
320
300
280
260
240
220
200
E180 160
140
120
100
80
60
40
20 0.5

00051-temf_IW*'emf

7,n-I,,

E-1 -1 -1 -1 -1

OLUtrloi-H

153
cases. exceptforthinsurfacelayers.

BIOPHYSICALJOURNALVOLUME51965154

APPENDIX1

NUMERICALVALUESOFCONSTANTSANDUNITS

t=lTd x=X/l

Cji=CZ(ciEi'/f+0

E/(RT)

I=10-2cm

2MNa.=0.000456CMvoltsec.

2I.H=0.003242ltM

2PuC,=0.0006i76CM=0.00676voltsec.

CNa(0)=10-4CNa(l)=10-5mol-ions/cm3

CH(0)=l0-5,C.(I)=10-4mol-ions/cm3

Ccl(o)=11X10-5,Cc(l)=11X10`5mol-ions/cm3

R=8.3703coul-volts/mol°K

T=288°K

RT/F=0.025volt

c=2.99776X1010cm/sec.oresu/abcoul

F=96,500coul/farad

e=79=dielectricconstantofwater

Mobility

Concentration

Electricpotential

Electricfield

Ionflux

Current:,c,-=0.676X10-3cm!/voltsec.

:C+(O)=11X10-5mol-ions/cm8 :RT/F=25mv :RT/Fl=2.5volts/cm :f=gCcC(O).(RT/FI)=18.59X10-8cmol-eon :a=fXF=0.01793935amp/cm2

ThevaluefoundforKiS

K=r,=1.6476X1010Td

APPENDIX2

C,O()=C-if(O),

theexpressionsfortheconcentrationsare where

Csi(x)=eX)Csio-ie*Zd'Ai0

*=;,i*(Cio-Ci*Ie*'t(xdx dC=FC*E=A*dx

A*=/(A.3)

(A.4)

BIOPHYSICALJouRNALVOLUME51965(A.1)

(A.2)CiI'=Ci'(1) 156
dC-KE=A++A--a(A.5)dxdxand

Kd72-CE=A+-A-=-G.(A.6)

G!a+j a _o+VI(U1-Vo)e*11(A.7)e*-1I

C(x)=a.x+3+KE,(A.8)

withboundaryconditionsonCgiving 2 =a-2(El-Eo2)

PM=Eo2,

7ThisrelationwasderivedbyGoldman(9).

0coE=Enu,+e-h(x)/,Eenv,.(A.10)

n-0n-0 \dhx/ax+(A.11) h+(O)=0(A.12) h-(l)=0,

000000

E=s6e"un+eA+(z)/Eenv+eh(X)/eeeWs(A.13)

n-0n-0n-0with h+(x)=3a[(ax+13)3/2_13/2] (A.14) h-(x)=-2[(aI+1)3/2_(ax+C)3/2] uO=G/(ax+1),(A.15)oforderc: ul=0,(A.16)oforderc': (d2uo/dx2)+(Eo2+2(-Eo3)x)uo--uo(A.17)

BIOPHYSICALJOURNALVOLUME51965158

dv1+d2h+/dx20dw,d2hjXd2(A20) dx2dh+/dx1=dx2dh-/dx withtheconditions =MFduo/dx=Gab-5/2Ldh+/dxj..o '()-[dhduoldxl-Ga(a+#)5/2LI)dh/dxj Thus,

Theasymptoticrepresentationthenbecomes

GGEo=,El=a!+

canbewritten -'\Gae-xfC(A.23)

LettingK=k/llandx=x/l,thiscanbewritten

_512e(A.24)

8/K=1.2835X10-7cm(A.25)

E 0.7 05 -00-0.40.6ID

APPENDIX3

NUMERICALMETHODSFORTRANSIENTSOLUTIONS

4ji=;Li((ciFC,*'EFCE')(A.26)

E=[I+U'-V']/(U+V)(A.27)where

n1+U=EjC(A.28) j-1

V=pi-C,-.(A.29)j-l

f'(x)=(f(xi+)-f(x--1))12h f"(x)=(f(x,.i)+f(x,+i)-2f(x,))/h2.

BIoPHysicALJOURNALVOLUME51965160

*(Xi)=-Cik(xi+)2Ci,1(x,)+Cjk*(xi-1)

Cjik+l(xi)=Cik,(x,)+bteCjk*(X,),

eik(xi)=12(Ck(Xi)-Cj+I*(X,)).(A.33)

Receivedforpublication,July28,1964.

REFERENCES

162BIOPHYSICALJOURNALVOLUME51965

quotesdbs_dbs17.pdfusesText_23