[PDF] [PDF] ALGÈBRE Cours et Exercices Première Année LMD - USTO

La partie Solutions des exercices proposés que l'étudiant pourra consulter en cas de difficulté 5 Page 6 Chapitre 1 Notions de Logique Mathématique



Previous PDF Next PDF





[PDF] Cours de mathématiques BTS SIO première année - Free

BTS SIO première année Nicolas Feuille d'exercices n◦4 – Rappels et compléments sur les suites En mathématiques P ⇔ Q se lit "P équivaut à Q"



[PDF] ALGÈBRE Cours et Exercices Première Année LMD - USTO

La partie Solutions des exercices proposés que l'étudiant pourra consulter en cas de difficulté 5 Page 6 Chapitre 1 Notions de Logique Mathématique



[PDF] Culture générale et expression - Free

12 fév 2003 · Ce cours de première année s'adresse à vous qui préparez un BTS activité, « Construire une argumentation », vous aiderez Anne et Jérémie à Sciences exactes : mathématiques, astrono- sion des enjeux du texte



[PDF] suites numeriques

1 1 suites de termes définition 1 : (suite arithmétique) quelle que soit la suite u de nombres réels : u est une suite arithmétique de raison r et de premier terme u0



[PDF] Exercices et problèmes dalgorithmique - Adrien Poupa

Enseignant en informatique et en mathématiques à l'EFREI depuis plus de dix ans, elle est La première version de l'algorithme est autant que possible sion d'un élément à une place quelconque, la concaténation de deux listes, se font par if (cour->succ = NULL) cour->succ->prev = prec; free(cour); } else // itération



[PDF] Intelligence Artificielle Cours Exercices Corrigã S Et Projets By Louis

Intelligence Artificielle Cours Exercices Corriga S Et couperin Description READ DOWNLOAD Corrige bts sio 2018 math suivi en ligne Corrigs de maths thatswhatsup me Top 172 Courses by Livre Maths PCSI PTSI HPrpa Tout en un 1er anne PDF Corrig exercice 4 bac s Free Drupal training at Acquia Linea Rowe



[PDF] Cours de Mathématiques 2

La première partie « Analyse 2 » de ce cours traite des sujets 1 Calcul intégral, 2 Fonctions équivalentes et développements limités, 3 Equations différentielles  



[PDF] Langage C : énoncé et corrigé des exercices IUP GéniE - LAMSADE

IUP GéniE MAtHéMAtiqUE Et InForMAtiqUE Langage C de structure contenant trois pointeurs , prem, d er et cour per m ettant d 'accéder respective m ent au

[PDF] SIO1 2015-2016 mathématiques approfondies - Free

[PDF] Qu 'est-ce que le BTS SP3S ? Qui peut accéder au BTS SP3 SS ? Qu

[PDF] bts sp3s 2017 -circulaire academique - Académie de Nantes

[PDF] BTS SP3S -GF-2

[PDF] Sommaire des cours de 1ere année du BTS SP3S - Cned

[PDF] Sommaire des cours de 1ere année du BTS SP3S - Cned

[PDF] Sommaire des cours de 1ere année du BTS SP3S - Cned

[PDF] OBJECTIFS ET MODALITES DU STAGES DE 2ème ANNEE

[PDF] Systèmes Electroniques

[PDF] Systèmes Electroniques

[PDF] Sommaire cours 1re année BTS VPT - Cned

[PDF] BTS Tourisme

[PDF] programme bts tourisme - ISTI Paris

[PDF] programme bts tourisme - ISTI Paris

[PDF] Les établissements de formation préparant aux métiers des Travaux

ALGÈBRE

Cours et Exercices

Première Année LMD

Marir Saliha

2

Table des matières

1 Notions de Logique Mathématique 6

1.1 Préambule . . . . . . . . . . . . . . . . . . . . . . .

6

1.2 Connecteurs logiques . . . . . . . . . . . . . . . . .

8

1.3 Propriétés des connecteurs logiques . . . . . . . . .

10

1.4 Quantificateurs mathématiques . . . . . . . . . . .

12

1.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . .

15

2 Ensembles et Applications 20

2.1 Ensembles . . . . . . . . . . . . . . . . . . . . . . .

20

2.1.1 Inclusion . . . . . . . . . . . . . . . . . . . .

21

2.1.2 Opérations sur les ensembles . . . . . . . . .

22

2.1.3 Propriétés des opérations sur les ensembles .

25

2.1.4 Partition . . . . . . . . . . . . . . . . . . . .

26

2.1.5 Produit Cartésien . . . . . . . . . . . . . . .

27

2.1.6 Exercices sur les ensembles . . . . . . . . . .

27

2.2 Applications . . . . . . . . . . . . . . . . . . . . . .

31

2.2.1 Composition d"applications . . . . . . . . .

32

2.2.2 Image directe et Image réciproque . . . . . .

32

2.2.3 Injection, Surjection, Bijection . . . . . . . .

3 6

2.2.4 Exercices . . . . . . . . . . . . . . . . . . .

41

3 Relations Binaires 48

3.1 Généralités . . . . . . . . . . . . . . . . . . . . . .

48

3.1.1 Propriétés des relations binaires dans un en-

semble . . . . . . . . . . . . . . . . . . . . . 49

3.2 Relation d"équivalence . . . . . . . . . . . . . . . .

50

3.3 Relation d"ordre . . . . . . . . . . . . . . . . . . . .

52

3.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . .

53
3

4TABLE DES MATIÈRES

Bibliographie 62

Introduction

Ce polycopié reprend quelques notions mathématiques à la base de la partie Algèbre de l"unité d"Enseignement Maths1 de premières années LMD Sciences et techniques et Mathématiques et informa- tique. Il peut aussi être utilement utilisé par les étudiants d"autres paliers aussi bien en sciences et sciences et techniques que ceux de

Biologie, Sciences économiques ou autre.

Les chapitres de ce texte se décomposent de la façon suivante : Le cours contient les notions à assimiler. Il convient d"en ap- prendre les définitions et les énoncés des résultats principaux. Les démonstrations données doivent être comprises ainsi que les exemples proposés tout au long du cours. La partie entrainement comprend des exercices qui ont été choisis soigneusement. Il est conseillé de s"exercer à résoudre par soi-même les exercices sans avoir une solution à côté . C"est grâce à ce travail personnel indispensable que l"on peut aller loin dans la compréhension et l"assimilation des notions mathématiques introduites. C"est la seule méthode connue à ce jour pour progresser en mathématiques. L"étu- diant consciencieux travaillera la justification de chacune de ses réponses. Rappelons que trouver la bonne réponse ne suffit pas en science, il faut aussi la justifier! La partie Solutions des exercices proposés que l"étudiant pourra consulter en cas de difficulté. 5

Chapitre 1

Notions de Logique

Mathématique

Sommaire1.1 Préambule . . . . . . . . . . . . . . . . . .6

1.2 Connecteurs logiques . . . . . . . . . . .

8

1.3 Propriétés des connecteurs logiques . .

10

1.4 Quantificateurs mathématiques . . . . .

12

1.5 Exercices . . . . . . . . . . . . . . . . . . .

15 1.1 Préambule

Les mathématiques actuelles sont bâties de la façon suivante : Axiome :Un axiome est un énoncé supposé vrai à priori et que l"on ne cherche pas à démontrer. Exemple 1.1.1.Euclide a énoncé cinq axiomes qui devaient être la base de la géométrie euclidienne; le cinquième axiome a pour énoncé : Par un point extérieur à une droite, il passe une et une seule droite parallèle à cette droite. 6

1.1. PRÉAMBULE7

Les cinq axiomes de Péano, qui définissent l"ensemble des en- tiers naturels. Le cinquième axiome est : siPest une partie deNcontenant0et que tout successeur de chaque élément dePappartient àP(le successeur de n estn+1) alorsP=N. Cet axiome est appelé " axiome d"in- duction ». Définition :Une définition est un énoncé dans lequel on décrit les particularités d"un objet mathématique. On doit avoir conscience que le mot "axiome" est parfois synonyme de "définition". Démonstration :(ou preuve) c"est réaliser un processus qui per- met de passer d"hypothèses supposées vraies à une conclusion et ce en utilisant des règles strictes de logique. On décide enfin de qualifier de vraie toute affirmation obtenue en fin de démonstration et on l"appelle selon son importance,

Lemme :Un résultat d"une importance mineure.

Théorème :Un résultat d"une importance majeure. Corollaire :Un corollaire à un théorème est conséquence à ce théo- rème. Conjecture :Un résultat mathématique que l"on suppose vrai sans parvenir à le démontrer. Exemple 1.1.2.La conjecture de Fermat : sin2N; n3, il n"existe pas d"entiers naturelsx;y;ztels que x n+yn=zn Récemment, ce résultat a été démontré. Proposition :Une proposition est un énoncé mathématique pouvant être vrai ou faux, on la note par les lettres P, Q, R,...etc. Exemple 1.1.3.L"énoncé " 24 est multiple de 4 » est une propo- sition vraie. L"énoncé " 19 est multiple de 3 » est une proposition fausse. A toute proposition correspond une table de véritéP V FouP 1 0

8CHAPITRE 1. NOTIONS DE LOGIQUE MATHÉMATIQUE

Pour deux propositionsPetQnon précisées, correspond22possi- bilités d"attribution de véritéPQ 11 10 01 00 D"une manière générale, ànpropositions correspond2npossibilités d"attribution de vérité.

1.2 Connecteurs logiques

Si P est une proposition et Q est une autre proposition, nous allons définir de nouvelles propositions construites à partir de P et de Q.

Négation d"une proposition

La négation d"une proposition P est une proposition notéeP et définie à partir de sa table de véritéPP 10 01

Conjonction " et »

La conjonction est le connecteur logique " et » qui à tout couple de propositions(P;Q)associe la proposition "P et Q », notéeP^Qet définie ainsi :P^Qest vraie siPetQsont toutes les deux vraies simultanément, fausse dans les autres cas. On résume ceci dans la table de vérité suivantePQP^Q111 100
010 000

1.2. CONNECTEURS LOGIQUES9

Disjonction " ou »

La disjonction est le connecteur logique " ou » qui à tout couple de propositions(P;Q)associe la proposition "P ou Q », notéeP_Qet définie ainsi :P_Qest fausse siPetQsont toutes les deux fausses simultanément, vraie dans les autres cas. On résume ceci dans la table de vérité suivantePQP_Q111 101
011 000

Implication ")»

L"implication est le connecteur logique qui à tout couple de propositions(P;Q)associe la proposition "P implique Q », notéeP)Qet définie ainsi :P)Qest fausse lorsqueP est vraie etQest fausse, vraie dans les autres cas. On résume ceci dans la table de vérité suivantePQP)Q111 100
011 001

Equivalence ",»

L"équivalence est le connecteur logique qui à tout couple de propositions(P;Q)associe la proposition "P équivaut Q », notéeP,Qet définie ainsi :P,Qest vraie lorsquePet Qont la même valeur de vérité, fausse dans les autres cas. On résume ceci dans la table de vérité suivantePQP,Q111 100
010 001

10CHAPITRE 1. NOTIONS DE LOGIQUE MATHÉMATIQUE

1.3 Propriétés des connecteurs logiques

Considérons la propositionP. Cette proposition peut prendre la valeur de vérité vrai ou faux. Considérons la proposition composée R=P_P Cette proposition est remarquable. En effet,Rest toujours vraie et ce indépendamment deP. Vérifions-le :PPP_P 101

011(1.1)

La propositionRest alors qualifiée de tautologie. Définition 1.3.1.Une proposition qui est vraie quelles que soient les valeurs de vérité des propositions qui la composent est appelée une Tautologie. Propriétés 1.3.1.Quelles que soient les valeurs de vérité des pro- positionsP,QetR, les propositions suivantes sont toujours vraies. P_P P,P P^P,P P_P,P

P^Q,Q^P(Le connecteur^est commutatif)

P_Q,Q_P(Le connecteur_est commutatif)

1.3. PROPRIÉTÉS DES CONNECTEURS LOGIQUES11

(P^Q)^R,P^(Q^R)(Le connecteur^est associatif) (P_Q)_R,P_(Q_R)(Le connecteur_est associatif)

P^(Q_R),(P^Q)_(P^R)(Le connecteur^est dis-

tributif sur_)

P_(Q^R),(P_Q)^(P_R)(Le connecteur_est dis-

tributif sur^)

P^(P_Q),P

P_(P^Q),P

[(P)Q)^(Q)R)])(P)R)(Transitivité de)) (P,Q),[(P)Q)^(Q)P)]

P^Q,P_Q(Lois de Morgan)

P_Q,P^Q(Lois de Morgan)

[(P,Q)^(Q,R)])(P,R)(Transitivité de,) (P)Q),(P_Q) (P)Q),(Q)P)(contraposée) Remarque 1.3.1.On peut démontrer ces propriétés en dressant la table de vérité.

12CHAPITRE 1. NOTIONS DE LOGIQUE MATHÉMATIQUE

1.4 Quantificateurs mathématiques

a)-

F ormeprop ositionnelle

Définition 1.4.1.Etant donné un ensembleE. On appelle forme propositionnelle à une variable définie surE, toute ex- pression mathématique contenant une variablex, telle que quand on remplace cette variable par un élément deE, on obtient une proposition. On la note parP(x).

Exemple 1.4.1.L"énoncé suivant :

P(n) : " n est un entier naturel multiple de 3» est une forme propositionnelle surNcar il devient une pro- position lorsqu"on donne une valeur àn. En effet, P(30 ): "30 est multiple de 3» est une pr opositionvr aie. P(19 ): "19 est multiple de 3» est une pr opositionfausse. Remarque 1.4.1.On peut avoir une forme propositionnelle à deux variables notéeP(x;y);x2E;y2FoùEetFsont deux ensembles. b)-

Les Qu antificateursuni verselssimples

A partir d"une forme propositionnelle P(x) définie sur un en- semble E, on construit de nouvelles propositions dites propo- sitions quantifiées en utilisant les quantificateurs "quel que soit» et "il existe». Définition 1.4.2.Le quantificateur "quel que soit», noté8, permet de définir la proposition "8x2E;P(x)» qui est vraie si pour tous les élémentsxdeE, la propositionP(x)est vraie.

Exemple 1.4.2.

-8x2[3;1];x2+ 2x30est une proposition vraie. -8n2N;(n3)n >0est une proposition fausse.

1.4. QUANTIFICATEURS MATHÉMATIQUES13

Définition 1.4.3.Le quantificateur " il existe au moins», noté9, permet de définir la proposition "9x2E;P(x)» qui est vraie si on peut trouver au moins un élémentx2Etel que la propositionP(x)soit vraie. S"il existe un et un seul élément x, on pourra écrire

9!x2E;P(x)

On dira dans ce cas qu"il existe un élément unique x vérifiantquotesdbs_dbs4.pdfusesText_8