[PDF] [PDF] STATISTIQUE : ESTIMATION - Institut de Mathématiques de Bordeaux

alors la loi normale N(m, σ2/n), ce qui confime que c'est un estimateur sans biais, convergent de m Un calcul montre alors que le maximum est atteint en



Previous PDF Next PDF





[PDF] Loi Binomiale et calculatrice - Maths Bordeaux

Choisir ici : Variable Placer la valeur de k Placer ici la valeur de n Placer ici la valeur de p Calculer en appuyant sur F1 Calcul de P(X ≤ k) : choisir Bcd



[PDF] Loi Normale et calculatrice

Utilisation de la calculatrice Équipe Académique Mathématiques Page 1 Bordeaux Loi Normale et calculatrice La variable aléatoire X suit la loi normale n(μ;σ)



[PDF] STATISTIQUE : ESTIMATION - Institut de Mathématiques de Bordeaux

alors la loi normale N(m, σ2/n), ce qui confime que c'est un estimateur sans biais, convergent de m Un calcul montre alors que le maximum est atteint en



[PDF] Probabilités - Université de Bordeaux

Soit X une variable aléatoire de loi géométrique G(p) En déduire, via un calcul simple, l'espérance et la variance de X 5) X suit la loi Binomiale B(n, p)



[PDF] Probabilités Loi binomiale CASIO Graph 35+, 75+

N suit la loi binomiale de paramètres n = 10 et p = 0,25 Il s'agit de calculer la probabilité de l'événement « N = 5 » Dans le menu de Calcul , Touche OPTN et  



[PDF] Loi normale et calculatrice - IREM dAix-Marseille

Loi normale et calculatrice TI 82 et 83 2011/2012 – IREM Aix-Marseille – Groupe Stat Proba 1) Pour Calculer P(a



[PDF] Université de Bordeaux 1, L3 Probabilités, 2013-2014 EXAMEN

2) Pour cette question, on rappelle (ADMIS) qu'une variable aléatoire réelle Z suit la loi normale centrée réduite ssi sa fonction caractéristique vaut : ∀t ∈ R, 



[PDF] Formulaire de Probabilités et Statistique - Christophe Chesneau

11 Calcul intégral 36 https://www math u-bordeaux fr/~ayger/Proba6031 pdf ◦ Cours pas avant r réalisations de A suit la loi binomiale négative Bneg(r, p) :



[PDF] Loi binomiale 4 - Les leçons de mathématiques à loral du CAPES

La loi de Bernoulli est un cas particulier de la loi binomiale où l'épreuve E n'est Le but de cette partie est de retrouver par le calcul ce dernier nombre miers, « petit » théorème de Fermat, records, Université Bordeaux 1, 6 juin 2004 URL



[PDF] Maîtriser laléatoire Exercices résolus de probabilités et statistique

considérée comme le point de départ du « calcul » des probabilités Parmi les des probabilités resta un champ des mathématiques constitué d'un ensemble de dans sa cave, il estime que les chances que cette bouteille soit un Bordeaux, La variable aléatoire X suit une loi binomiale de param`etres (5, 0,25) 2

[PDF] Touches de calcul Coût, Vente et Marge Touches de - Office DEPOT

[PDF] Exemples de calcul - CNAP

[PDF] Regle de comptage

[PDF] proportions - Maths-et-tiques

[PDF] Regle de comptage

[PDF] ti-83 calculatrice graphique manuel d 'utilisation - Maths Langella

[PDF] Regle de comptage

[PDF] Chap2 : L 'Energie mécanique

[PDF] grille de sélection des travailleurs qualifiés

[PDF] Rappels de seconde : vocabulaire

[PDF] Correction Déterminer un âge en utilisant la - SVT en Terminale S

[PDF] ECE : Détermination de l 'indice de réfraction de l 'eau - Sciences

[PDF] CHAPITRE IV : La charge électrique et la loi de Coulomb - IIHE

[PDF] Noyau et nuage électronique

[PDF] Sous-adressage et CIDR - DEPARTEMENT INFORMATIQUE IUT Aix

STATISTIQUE : ESTIMATION

Préparation à l"Agrégation Bordeaux 1

Année 2012 - 2013

Jean-Jacques Ruch

Table des Matières

Chapitre I. Estimation ponctuelle5

1. Définitions5

2. Critères de comparaison d"estimateurs 6

3. Exemples fondamentaux 6

3.a. Estimation dem6

3.b. Estimation de2en supposantmconnu 7

3.c. Estimation de2lorsquemest inconnu 7

4. Cas particulier de la loi normale 8

5. Construction d"estimateur par la méthode du maximum de vraisemblance 11

5.a. Cas discret11

5.b. Cas à densité12

Chapitre II. Estimation par intervalle13

1. Définition d"une région de confiance 13

2. Construction de régions de confiance 13

3. Exemples classiques d"estimation par intervalle 15

3.a. Estimation de la moyenne quand la variance est connue 15

3.b. Estimation de la moyenne quand la variance est inconnue 15

3.c. Estimation de la variance quand la moyenne est connue 16

3.d. Estimation de la variance quand la moyenne est inconnue 18

4. Comparaison de moyennes et de variances 18

4.a. Intervalle de confiance de la différence de deux moyenne 18

4.b. Intervalle de confiance du rapport de deux variances 20

5. Estimation d"une proportion 20

5.a. Estimation ponctuelle 21

5.b. Estimation par intervalle 21

5.c. Méthode du Bootstrap 22

3

CHAPITRE I

Estimation ponctuelle

En statistique, comme dans la théorie des probabilités le hasard intervient fortement. Mais dans la théorie

des probabilités, on suppose la loi connue précisément et on cherche à donner les caractéristiques de la

variable qui suit cette loi. L"objectif de la statistique est le contraire : à partir de la connaissance de la

variable, que peut-on dire de la loi de cette variable?

1. Définitions

SoitXune variable aléatoire dont la densité de probabilitéf(x;)dépend d"un paramètreappartenant

àIR. A l"aide d"un échantillon issu deX, il s"agit de déterminer au mieux la vraie valeur0de. On

pourra utiliser deux méthodes : -estimation ponctuelle: on calcule une valeur vraisemblable^de0

-estimation par intervalle: on cherche un intervalle dans lequel0se trouve avec une probabilité élevée.

Définition 1.Unn-échantillondeXest unn-uplet(X1;X2;:::;Xn)tel que lesXkont la même loi queXet sont indépendantes.

Uneréalisation de l"échantillonest alors unn-uplet(x1;x2;:::;xn)de valeurs prises par l"échantillon.Définition 2.Unestatistiquede l"échantillon est une variable aléatoire'(X1;X2;:::;Xn)où'est

une application deRndansR. UnestimateurTdeest une statistique à valeurs dansI. Uneestimationest la valeur de l"estimateur correspondant à une réalisation de l"échantillon.Exemple:X n=1n n X k=1X kest un estimateur de l"espérance mathématique. Définition 3.Lebiaisde l"estimateurTdeestE[T]0. S"il est nul, on dit queTest un estimateur sans biais. L"estimateurTnestasymptotiquement sans biaissilimE[Tn] =0.On note souvent le biaisb(T). Définition 4.L"estimateur est ditconvergentsi la suite(Tn)converge en probabilité vers0:

8" >0;P(jTn0j> ")!n!+10:

On parle d"estimateurfortement convergentlorsqu"on a convergence presque sûre.D"après Bienaymé-Tchebychev pour qu"un estimateur asymptotiquement sans biais soit convergent il

suffit que

Var(Tn)!n!+10:

5

6Chapitre I. Estimation ponctuelle

2. Critères de comparaison d"estimateurs

Un bon critère de comparaison est lerisque quadratique. Définition 5.SoientTun estimateur de. Le risque quadratique est défini par R(T;) =E[(T)2]On peut alors comparer deux estimateurs. Définition 6.On dit queT1est unmeilleur estimateurqueT2si

82I; R(T1;)R(T2;)

et

92I; R(T1;)< R(T2;):Un estimateur est ditadmissibles"il n"existe pas d"estimateur meilleur.

L"erreur quadratique moyenne deTse décompose en deux termes, le carré du biais et la variance deT:

E[(T)2] =b2(T) +Var(T):

Cette décomposition permet de se ramener à une discussion sur la variance pour les estimateurs sans

biais de. Définition 7.SoientT1etT2deux estimateurs sans biais de. On dit queT1est unplus efficace queT2si

82I;Var(T1)Var(T2)

et

92I;Var(T1)

Var(T1)Var(T2):

3. Exemples fondamentaux

SoitXune variable aléatoire telle queE[X] =met Var(X) =2.

3.a. Estimation dem.

Théorème 8.La moyenne empiriqueX

n=1n n X k=1X kest un estimateur sans biais et convergent dem.On a E[X n] =1n n X k=1E[Xk] =met Var(X n) =1n 2n X k=1Var[Xk] =2n !n!+10:

D"après la loi forte des grands nombresX

nest même fortemement convergent. Il est possible de déterminer la loi asymptotique de la moyenne empirique.

Jean-Jacques Ruch

3.Exemples fondamentaux7

Proposition 9.Sinest assez grand on peut utiliser l"approximation normale (lorsqueXadmet un moment d"ordre2)X nL N(m;2=n):C"est une conséquence du TCL qui nous assure que pn(X nm)L!n!+1N(0;2):

3.b. Estimation de2en supposantmconnu.

Théorème 10.Lorsquemest connu

S 2n=1n n X k=1(Xkm)2 est un estimateur sans biais et convergent de2.On a

E[S2n] =E"

1n n X k=1(Xkm)2# 1n n X k=1Var(Xk) =2 Par ailleurs, les variables(Xkm)2étant indépendantes :

Var(S2n) =1n

2n X k=1Var((Xkm)2) =1n

E[(Xm)4]E[(Xm)2]2=1n

44
aveck=E((Xm)k).

DoncS2nest un estimateur convergent. La loi forte des grands nombres appliquée aux variables(Xkm)2

entraîne même la convergence presque sûre vers2. Comme dans le cas de la moyenne empirique le TCL nous permet de déterminer la loi asymptotique de S

2n; on a lorsquenest assez grand :

S

2nL N(2;(44)=n):

3.c. Estimation de2lorsquemest inconnu.

En général on ne connaît pasm; on le remplace par un estimateur et on introduit la variance empirique

associée :S 2n=1n n X k=1(XkX n)2:

Théorème 11.La variance empiriqueS

2nest un estimateur biaisé et convergent de2. Il est asymptotique-

ment sans biais.On a E[S

2n] =1n

n X k=1E(X2k)E[X n2] =1n (n(m2+2))(m2+2n ) =n1n 2:

Jean-Jacques Ruch

8Chapitre I. Estimation ponctuelle

D"autre part, on peut montrer que :

Var(S

2n) =1n

442n

2424+1n

3434!0

aveck=E((Xm)k). L"estimateur est donc convergent.

Le résultat précédent et le lemme de Slutsky (Probabilité 2, Jean-Yves Ouvrard, p. 347) permet de

déterminer la loi asymptotique deS 2n:S

2nL N(2;(44)=n):

Théorème 12.La variance empirique corrigée c

S2n=1n1n

X k=1(XkX n)2: est un estimateur sans biais et convergent de2.Cela se montre facilement en remarquant que c

S2n=nn1S

2n:

4. Cas particulier de la loi normale

On suppose dans ce paragraphe queXsuit la loi normaleN(m;2). On sait queX n=1n n X k=1X ksuit alors la loi normaleN(m;2=n), ce qui confime que c"est un estimateur sans biais, convergent dem.

Les résultats obtenus au paragraphe précédent pour l"estimation de2sont encore valables; en particulier

on a :

E(S2n) =2et Var(S2n) =2(n1)n

24

En effet, calculonsk

k=E((Xm)k) =1p2Z +1 1 (xm)kexp (xm)22 dx 1p2Z +1 1 (p2u)kexp(u2)p2duen posantx=mp2u = 0sikest impair.

Lorsquek= 2pest pair on obtient

2p=2p2pp

Z +1 1 u2pexp(u2)du=2p+12pp Z +1 0 u2pexp(u2)du 2p2pp Z +1 0 vp1=2exp(v)dven posantu=pv 2p2pp (p+ 1=2) =(2p)!2 p(p!)2p et donc

Var(S2n) =1n

442n

2424+1n

3434=2(n1)n

24

Jean-Jacques Ruch

4.Cas particulier de la loi normale9

Définition 13.SoientX1;:::;Xn,nvariables aléatoires indépendantes identiquement distribuées de

loiN(0;1). La loi du2àndegrés de liberté est la loi de la variable aléatoire 2n=nX k=1X 2k:

La densité de cette loi est donnée par :

f

2n(u) =12(n=2)

u2 n=21exp u2 1quotesdbs_dbs22.pdfusesText_28