[PDF] [PDF] Exercices Corrigés - CMAP - École polytechnique

29 août 2012 · FORMULATION VARIATIONNELLE DES PROBL`EMES ELLIPTIQUES Exercice 2 1 1 Si f est une fonction continue sur [0,1], montrer que 



Previous PDF Next PDF





[PDF] Exercices Corrigés - CMAP - École polytechnique

29 août 2012 · FORMULATION VARIATIONNELLE DES PROBL`EMES ELLIPTIQUES Exercice 2 1 1 Si f est une fonction continue sur [0,1], montrer que 



[PDF] Analyse numérique des EDP TD 1

29 jan 2016 · Analyse numérique des EDP - TD1 Exercice 1 (Défaut de coercivité dans C1) Corrigé : On prend x0 = α+β 2 , ϕ une fonction C∞ c (R) à support dans ] − 1, 1[ non Formulation variationnelle et existence de la solution



[PDF] Corrigé de la Séance 2 : Formulations variationnelles - ENSTA Paris

Exercice 1 Probl`eme avec condition aux limites de Fourier Construire la formulation variationnelle (FV1) associée `a (1) Corrigé de la question Interpréter le probl`eme (P) en termes d'équations aux dérivées partielles dans Ω1 et Ω2, de



[PDF] Méthodes variationnelles

Analyse numérique des EDP, M1 99 Définition 3 5 (Formulation variationnelle) Soit f ∈ L2(Ω); on dit que u est solution variationnelle de (3 1) si Exercice 36 ( Formulation faible pour le probl`eme de Dirichlet en 1D) Corrigé en page 128



[PDF] Séance no3 Formulations variationnelles Corrigé - Inria

Formulations variationnelles Corrigé 29 Novembre 2005 Exercice 1 Formulation variationnelle 1 1 - Soit v ∈ H1(Ω), on pose vi = vΩi et l'on multiplie la 



[PDF] Analyse, séance 4 : exercices corrigés LA MISE EN OEUVRE

Analyse, séance 4 : exercices corrigés LA MISE EN OEUVRE Question 1 Un exemple en dimension 1 • Définir une formulation variationnelle et un principe du 



[PDF] Cours-Travaux Dirigés-Exercices Corrigés

21 jui 2016 · Problème de Neumann Exercice 28 (suite) 5) Montrer que la formulation variationnelle associée au problème (P) admet une unique solution 



[PDF] Interrogation no2 - corrigé, groupe 1 Lundi 13/02/17

13 fév 2017 · On considère l'EDP elliptique d'ordre 2 suivante : −∆u = f dans Ω, Voir l' exercice 5 (a) de la feuille de TD 2 (b) (1,5 points) de telle sorte que toute solution u de (2) satisfasse la formulation variationnelle { Trouver u ∈ V 



[PDF] EQUATIONS AUX D´ERIV´EES PARTIELLES 2 - WH5 (Perso

12 juil 2002 · EDP elliptiques et formulations variationnelles en dimension > 1 42 1 6 1 P Rabier, J M Thomas, Exercices d'analyse numérique des équations aux dérivées partielles, Par ailleurs, tu auras corrigé le δy en ∆y



[PDF] Examen du 20 avril 2015

20 avr 2015 · 1) En supposant que u ∈ H4(]0,1[), donner la formulation variationnelle de ce problème telle que la forme bilinéaire associée fasse intervenir 

[PDF] formulation variationnelle exercices corrigés pdf

[PDF] pecheur d'islande film

[PDF] madame chrysanthème

[PDF] pecheur d'islande film 1996

[PDF] ramuntcho

[PDF] aziyadé

[PDF] cours modélisation et simulation des systèmes pdf

[PDF] différence entre modélisation et simulation

[PDF] modélisation et simulation cours

[PDF] modélisation et simulation cours informatique

[PDF] modélisation et simulation pdf

[PDF] pierre et jean résumé court

[PDF] pierre et jean personnages

[PDF] pierre et jean chapitre 1

[PDF] fonction affine activité

Exercices Corrig

es

Analyse num

erique et optimisation

Une introduction a la modelisation mathematique

et a la simulation numerique

G. Allaire, S. Gaubert, O. Pantz

Ecole Polytechnique

MAP 431

29 ao^ut 2012

Introductioni

Introduction

Ce recueil rassemble tous les exercices proposes dans le cours de deuxieme annee d'introduction a l'analyse numerique et l'optimisation de Gregoire Allaire [1]. Toute reference a ce dernier se distinguera des references internes au recueil par ses ca- racteres gras. Par exemple, (1.1) fait reference a la premiere formule du cours. Malgre notre vigilance, ce manuscrit comporte sans aucun doute (encore) de multiples er- reurs de tout ordre. De nombreux exercices meriteraient un traitement plus elegant autant d'un point de vue mathematique que stylistique. Nous invitons d'ailleurs tout lecteur a participer a son amelioration. Vous pouvez nous signaler toute erreur ou approximation en envoyant un mail a l'adresse olivier.pantz@polytechnique.org Nous serons egalement heureux de recevoir de nouvelles solutions aux exercices pro- poses ou toutes autres suggestions. Bon courage.

G. Allaire, S. Gaubert, O. Pantz

Paris, Juillet 2006

iiIntroduction

Chapitre 1

INTRODUCTION A LA

MODELISATION

MATHEMATIQUE ET A LA

SIMULATION NUMERIQUE

Exercice 1.2.1On suppose que la donnee initiale0est continue et uniformement bornee surR. Verier que (t;x) =1p4tZ +1 1

0(y)exp

(xV ty)24t dy(1.1) est bien une solution de @@t +V@@x @2@x

2= 0pour(x;t)2RR+(t= 0;x) =0(x)pourx2R(1.2)

Correction.Dans un premier temps, nous allons verier formellement que l'ex- pression de(t;x) (1.1) proposee est solution de l'equation de convection diusion (1.2). Dans un deuxieme temps, nous justierons les calculs eectues.

On poseG(x;t;y) = exp

(xV ty)24t . On a @G@x =xV ty2tG(x;t;y) 2G@x 2=

12t+(xV ty)242t2

G(x;t;y)

@G@t =(x+V ty)(xV ty)4t2G(x;t;y): Quitte a permuter les operateurs de derivation et d'integration, on en deduit que @@x Z 1 1

0(y)G(x;t;y)dy=Z

1 1

0(y)@G@x

dy(1.3) =Z 1 1

0(y)xV ty2tG(x;t;y)dy:

1

2CHAPITRE 1. MODELISATION ET SIMULATION

De maniere similaire,

2@x 2Z 1 1

0(y)G(x;t;y)dy=Z

1 1

0(y)12t(xV ty)242t2

G(x;t;y)dy

et @@t Z 1 1

0(y)G(x;t;y)dy=Z

1 1

0(y)(x+V ty)(xV ty)4t2G(x;t;y):

On obtient ainsi l'expression des derivees partielles de(t;x) pour toutt >0, a savoir @@x =1p4tZ 1 1

0(y)xV ty2tG(x;t;y)dy

2@x

2=1p4tZ

1 1

0(y)12t(xV ty)242t2

G(x;t;y)dy

@@t =1p4tZ 1 1

0(y)(x+V ty)(xV ty)4t212t

G(x;t;y)dy:

On verie alors aisement que

@@t +V@@x @2@x 2= 0: Il reste a prouver que(t;x) est prolongeable ent= 0 et verie bien la condition initiale, c'est-a-dire que lim t!01p4tZ 1 1

0(y)exp

(xV ty)24t dy=0(x):(1.4)

Rappelons que,

Z1 1 exp(x2)dx=p:(1.5)

Pour etablir cette relation, il sut de calculer

R1

1ex2dx

2=R R

2ejxj2dxen

coordonnees polaires. On pose (x;t;y) =1p4texp (xV ty)24t

D'apres (1.5),

R(x;t;y)dy= 1 pour toutxett. Enn, pour toutx2R, on constate que pour toutydierent dex, limt!0(x;t;y) = 0. Ainsi,xetant xe,(x;t;y) est une fonction deyse concentrant enxlorsquettend vers zero. Pour ^etre plus precis, on montre que pour toutet"reels strictement positifs, il existet(;") tel que pour toutt < t(;"),Z x+ x(x;t;y)dy1": 3 et Z x 1 (x;t;y)dy+Z 1 x+(x;t;y)dy": L'equation (1.4) decoule alors du fait que0est continue, uniformement bornee. Reste a prouver que les commutations des operateurs d'integration et de derivation eectuees lors du calcul des derivees partielles de(t;x) sont licites. Pour toutxde Ret toutt >0, il existe des constantesC1(x;t) etC2(x;t) telles que sizest su- samment proche dex,zV ty2t

C1(x;t)(1 +jyj)

et (zV ty)2jyj22 +C2(x;t): En postantC(x;t) =C1(x;t)exp(C2(x;t)=4t), il vient@G@x (z;t;y)C(x;t)(1 +jyj)exp jyj28t Comme0(y) est uniformement bornee, on en deduit que0(y)@G@x (z;t;y)C(x;t)(1 +jyj)exp jyj28t sup sj0(s)j pour toutzappartenant a un voisinage dex. Le terme de droite est integrable par rapport ay. Ainsi, d'apres le theoreme de derivation sous le signe somme, on en deduit que l'echange des operateurs d'integration et de derivation dans (1.3) est licite. On peut proceder de maniere similaire pour justier les deux autres commu- tations eectuees. Exercice 1.2.2On suppose que la donnee initiale0est derivable et uniformement bornee surR. Verier que (t;x) =0(xV t) (1.6) est bien une solution de@@t +V@@x = 0pour(x;t)2RR+(t= 0;x) =0(x)pourx2R:(1.7) Montrer que (1.6) est la limite de (1.1) lorsque le parametretend vers zero.

Correction.@@t

(x;t) =V@0@x (xV t) =V@@x (x): Ainsi,verie l'equation dierentielle annoncee. De plus,verie trivialement la condition initiale. Par un raisonnement analogue a celui qui nous avait permis d'etablir la continuite de la solution ent= 0 dans l'exercice 1.2.1, on montre que lim !01p4tZ +1 1

0(y)exp

(xV ty)24t) dy=0(xV t) =(t):

4CHAPITRE 1. MODELISATION ET SIMULATION

Exercice 1.3.1On se propose de retrouver une propriete de decroissance exponentielle en temps (voir la formule (1.1)) de la solution de l'equation de la chaleur 8< :@u@t u=fdans

R+u= 0sur@

R+u(t= 0) =u0dans

(1.8) dans un domaine borne. En une dimension d'espace, on pose = (0;1)et on suppose quef= 0. Soitu(t;x)une solution reguliere de (1.8). En multipliant l'equation paru et en integrant par rapport ax, etablir l'egalite 12 ddtquotesdbs_dbs13.pdfusesText_19