[PDF] Les symboles somme et produit - lyceedadultesfr



Previous PDF Next PDF







La méthode produit-somme - Université du Québec à Montréal

La méthode produit-somme : Cette méthode consiste à calculer le produit ×premier et troisième terme du polynôme :+" Ensuite écrire le résultat sous forme d’un produit de deux autres nombres et



Les symboles somme et produit - lyceedadultesfr

1 LE SYMBOLE SOMME Σ 1 Le symbole somme Σ 1 1 Définition Définition 1 : Soit (a i)une suite de nombres réels ou complexes Soit deux entiers naturels n et p tels que p 6n, on définit la somme suivante par : n ∑ k=p a k =ap +ap+1 +···+an Soit I un sous-ensemble fini de N, la somme de tous les termes a i, i décrivant I sera notée



Récurrence, somme, produit

CHAPITRE 1 RÉCURRENCE, SOMME, PRODUIT Pour rédiger rigoureusement une preuve par récurrence double, on procède de la manière sui-anvte : 1)On énonce clairement la propriété P(n) que l'on souhaite démontrer



ax + bx + c Par la méthode Somme et Produit

LA MÉTHODE Appelons le coefficient du premier terme : T 1 x2 + 5x + 6 T 1 Appelons le coefficient du deuxième terme : T 2 T 2 Appelons le coefficient troisième terme : T 3 T 3 Le produit T 1 X T 3 = 1 x 6 =6 La somme T 2 = 5 3 2 les 2 termes sont donc 3x et 2x x2 + 5x + 6 x2 + 2x 3x + 6



1La somme de huit et du produit de six par trois 2Le

1 La somme du quotient de vingt et un par sept et de douze 2 La somme de quinze et du produit de six par trois 3 La différence de quinze et de la somme de six et de trois 4 La somme de huit et du produit de quatre par sept



Rappel : Le produit est le résultat

2- Effectuer la somme de 12 et de 7 3- Effectuer le produit de la somme de 2 et 4 par le carré de 5 * * * 1-Effectuer le produit de 45 par 6 Etape 1 : On écrit d'abord le symbole de la multiplication précédé et suivi de parenthèses Etape 2 : Dans chaque parenthèse, on écrit le facteur indiqué (Un facteur est l'un des termes du



Produit maximal de deux nombres connaissant leur somme

Produit maximal de deux nombres connaissant leur somme Partie A I Propriété (« règle du produit maximal ») Problème : Étant donnés deux nombres de somme fixée, comment faut-il les choisir pour que leur produit soit maximal ? 1°) Énoncé Le produit de deux nombres dont la somme est constante est maximal lorsqu’ils sont égaux



Calculs numériques 1 – révisions - La classe inversée de

La différence du produit de 6 par (—3) et de la somme de (—9) et 2 2 Classer les résultats obtenus dans l'ordre décroissant 32 • Calculer 8 - (-7)2 x 2



Produit et quotient de nombres relatifs Classe de 4e

Activité 3 : Du langage naturel au langage mathématique Écrire l’expression correspondant à chacune des phrases suivantes, puis la calculer : a Le produit de –3 par la somme de 8 et (–2) b La somme de 8 et du produit de (–5) par 4 c Le produit de –6 par le quotient de (–4) par 8 d le quotient de -6 par la différence entre

[PDF] la somme du produit de 16 par 4 et de 9

[PDF] La somme et le quotient

[PDF] La somme ou un produit

[PDF] la somme, le produit et la différence

[PDF] La sonde spatial Rosetta et le robot Philae

[PDF] la sorciere de la rue Mouffetard

[PDF] la sorcière de la rue mouffetard et autres contes de la rue broca pdf

[PDF] la sorcière du placard aux balais exploitation pédagogique

[PDF] la sorcière du placard aux balais pdf

[PDF] la sorcière du placard aux balais questions

[PDF] la sorcière du placard aux balais texte

[PDF] La soupe magique

[PDF] La soupe magique 2

[PDF] La soupe magique 3

[PDF] la souris (animal)

DERNIÈRE IMPRESSION LE27 février 2017 à 15:46

Les symboles somme et produit

Table des matières

1 Le symbole sommeΣ2

1.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Linéarité et changement d"indice. . . . . . . . . . . . . . . . . . . . 3

1.3 Sommes télescopiques. . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Sommes à connaître. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Sommes doubles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Le symbole produitΠ9

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Relation produit - somme. . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Produits télescopiques. . . . . . . . . . . . . . . . . . . . . . . . . . 9

PAUL MILAN1VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1 Le symbole sommeΣ

1.1 Définition

Définition 1 :Soit(ai)une suite de nombres réels ou complexes. Soit deux entiers naturelsnetptels quep?n, on définit la somme suivante par : n∑ k=pa k=ap+ap+1+···+an Soit I un sous-ensemble fini deN, la somme de tous les termesai,idécrivant I sera notée∑ i?Ia i

Remarque :

•La variablekest une variable muette, c"est à dire qu"une fois la somme calculée, le résultat ne dépend plus dek. On peut donc lui donner le nom qu"on veut :i, j,k, etc. à exception des bornes de la somme, icipetn:n∑ k=pa k=n∑ i=pa i=n∑ j=pa j

•On retrouve cette variable muette, lorsque l"on veut calculer une somme àl"aide d"un algorithme. (boucle Pour)

•Lorsque les termes de la somme ne dépendent pas de la variable, on somme des termes constants donc : n∑ k=03=3+3···+3? n+1 termes=3(n+1)

•Si I={2;4;6}alors∑

i?Ia i=a2+a4+a6.

Exemples :

•1+2+···+n=n∑

k=1k.

•1+2+22+···+2n=n∑

k=02k. •1 n+1+1n+2+···+12n=n∑ k=11n+k.

•1+3+5+···+(2n-1) =n∑

k=1(2k-1). ?Ne pas confondre : n∑ k=1(k+1) =n∑ k=1k+navecn∑ k=1k+1 les parenthèses font toute la différence. n∑ k=022k(n+1 termes) et2n∑ k=02k(2n+1 termes) Propriété 1 :Relation de Chasles et linéarité :

Relation de Chasles :

n∑ k=pa k= m∑ k=pa k+n∑ k= m+1 ak

L"opérateur somme est linéaire :

n∑ k=p(αak+βbk) =αn∑ k=pa k+βn∑ k=pb k.

PAUL MILAN2VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

Exemple :n∑

k=0a k=

2∑

k=0a k+n∑ k= 3 aketn∑ k=0(3k+4k) =n∑ k=03k+4n∑ k=0k

1.2 Linéarité et changement d"indice

Propriété 2 :Changement d"indice.

L"expression à l"aide du symbole

∑n"est pas unique. On peut écrire une somme avec des indices différents. Les changements d"indicesk→k+p(translation)k→p-k(symétrie) sont les plus fréquents :n∑ k=1a k=n+p k=p+1a k-p=p-1 k=p-na p-k

Exemples :Calculer la somme :Sn=n∑

k=1?

1k-1k+1?

•On utilise la linéarité :Sn=n∑

k=11k-n∑ k=11k+1 •On effectue un changement d"indice sur la deuxième somme :k→k+1 : S n=n∑ k=11 k-n+1∑ k=21k. k=21k-n∑ k=21k-k=n+1? ???1 n+1=1-1n+1

Pourn?2, on considère la sommeSn=n+1∑

k=2k22k-1. Faire une translation d"indice pour que la nouvelle variable varieentre 0 et(n-1) et une symétrie d"indice pour que la nouvelle variable varie entre 2et(n+1). •Pour la translation, il suffit de faire :k→k-2, on a alors : S n=n-1∑ k=0(k+2)22(k+2)-1=n-1∑ k=0(k+2)22k+3 •Pour la symétrie, il faut déterminer le milieu :2+ (n+1)2=n+32. On effectue alors la symétriek→n+3-k, on a alors : S n=n+1∑ k=2(n+3-k)22(n+3-k)-1=n+1∑ k=2(n+3-k)22n+5-2k

PAUL MILAN3VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1.3 Sommes télescopiques

Théorème 1 :Sommes télescopiques

Soit une suite(an)une suite de nombres réels ou complexes, on a : ?n,p?N,p?n,n∑ k=p(ak+1-ak) =an+1-ap

Remarque :n∑

k=0(ak+1-ak) =an+1-a0etn∑ k=0(bk-bk+1) =b0-bn+1

Démonstration :On pose :Sn=n∑

k=p(ak+1-ak)

•On utilise la linéarité :Sn=n∑

k=pa k+1-n∑ k=pa k •On effectue un changement d"indice sur la première somme :k→k+1 S n=n+1∑ k=p+1a k-n∑ k=pa k •On sépare les termes différents :Sn=an+1+n∑ k=p+1a k-n∑ k=p+1a k-ap=an+1-ap Exemples :Lessommestélescopiquessontuneméthodetrèsefficacepourcalcu- ler la somme des termes d"une suite(un). Il s"agit de trouver une suite(vn)pour queun=vn+1-vn. Ce n"est bien sûr pas toujours possible malheureusement.

Calculer les sommes suivantes :

•Sn=n∑

k=11k(k+1): on décompose1k(k+1)en1k-1k+1 S n=n∑ k=11 k(k+1)=n∑ k=1?

1k-1k+1?

=1-1n+1.

•Rn=n∑

k=1k×k! : on décomposek×k! en(k+1)k!-k!= (k+1)!-k! R n=n∑ k=1k×k!=n∑ k=1[ (k+1)!-k!]= (n+1)!-1

•Tn=n∑

k=11k(k+1)(k+2) a k(k+1)-a(k+1)(k+2)=a(k+2)-akk(k+1)(k+2)=2ak(k+1)(k+2), on aa=12 T n=n∑ k=11 k(k+1)(k+2)=12n∑ k=1?

1k(k+1)-1(k+1)(k+2)?

1 2?

12-1(n+1)(n+2)?

n(n+3)quotesdbs_dbs18.pdfusesText_24