[PDF] ENSEMBLES DE NOMBRES - Maths & tiques



Previous PDF Next PDF







Chapitre 1 Ensembles et applications

1 Ensembles: introduction D´efinition On appelle ensemble une collection des objets Ces objets sont appel´es les ´el´ements de l’ensemble Exemples 1) N= l’ensemble de tous les nombres entiers positifs 2) Z= l’ensemble de tous les nombres entiers relatifs 3) Q= l’ensemble des nombres rationnels m n, m,n ∈ Z, n 6= 0



Chapitre 1 Ensembles et sous-ensembles

Donner tous les sous-ensembles de E 2 ) Montrer, par r´ecurrence sur n, qu’un ensemble a n ´el´ements a 2n sous-ensembles 3 ) Soient A et B des sous-ensembles d’un ensemble E Montrer que (A ⊂B si et seulement si P(A) ⊂P(B)) 3 Intersection et r´eunion D´efinition 1 3 – Soient A et B deux sous-ensembles d’un ensemble E



1 Les ensembles - lpsmparis

1 Les ensembles 1 1 Définition d’un ensemble Définition 1 Un ensemble est une collection d’objets mathématiques Les objets qui appartiennent à un ensemble sont appelés les éléments de cet ensemble Exemple Notons E est l’ensemble des nombres entiers pairs compris entre 0 et 10 Alors les éléments de E sont 0, 2, 4, 6, 8 et 10



ENSEMBLES DE NOMBRES - Maths & tiques

1) Pour visualiser les ensembles solutions, on peut représenter les intervalles I et J sur un même axe gradué Les nombres de l'intersection des deux ensembles sont les nombres qui appartiennent à la fois aux deux ensembles Il s’agit donc de la zone de l’axe gradué où les deux ensembles se superposent Ainsi I ∩ J = ]0 ; 3]



Ensembles et applications - e Math

les mathématiques sur des bases logiques Il reçut une lettre d’un tout jeune mathématicien : «J’ai bien lu votre premier livre Malheureusement vous supposez qu’il existe un ensemble qui contient tous les ensembles Un tel ensemble ne peut exister » S’ensuit une démonstration de deux lignes Tout le travail de Frege s



Résumé de cours : Logique, ensembles, applications

Def : Soit P(x)une proposition dont les valeurs de vérité sont fonction d’un élément variable x de E Quand la proposition P(x)est vraie pour tous les éléments x de E, on écrit : ∀x ∈ E, P(x) Quand la proposition P(x)est vraie pour au moins un élément x de E, on écrit : ∃x ∈ E, P(x)



D epartement de math ematiques et de statistique Universit e

mun Ainsi en est-il, dans les entiers, de l’ensemble Pdes nombres pairs et de l’ensemble I des nombres impairs : P\I= ; Par contre, les deux ensembles comprenant d’une part les impairs et d’autre part les carr es ne sont pas disjoints : il y a des impairs carr es Remarque 2 2 Tout comme la relation ˝



MATHÉMATIQUES DISCRÈTES

ensembles, les mathématiciens ne voyaient pas d’objection à envisager un ensemble dont les élé-ments seraient tous les ensembles : l’ensemble des ensembles Russell leur opposa le paradoxe suivant : Supposons que l’ensemble de tous les ensembles existe, et notons-le E On considère l’ensemble A = fx 2E : x 2/ xg

[PDF] les ensembles n z q r

[PDF] les ensembles n z q r pdf

[PDF] les ensembles n z q r tronc commun

[PDF] Les entiers - Mathématiques

[PDF] Les entiers relatifs

[PDF] les entreprise qui pratique le e-commerce au maroc

[PDF] les entreprises (économie)

[PDF] les entreprises en ont elles fini avec le financement externe indirect

[PDF] les envois postaux

[PDF] Les enzymes

[PDF] Les enzymes et leurs propriétés

[PDF] les eoliennes

[PDF] les epi

[PDF] Les Epithètes Homérique

[PDF] Les épithètes homériques

1 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr ENSEMBLES DE NOMBRES I. Définitions et notations Non exigible 1. Nombres entiers naturels Un nombre entier naturel est un nombre entier qui est positif. L'ensemble des nombres entiers naturels est noté ℕ. ℕ=

0;1;2;3;4...

. Exemples : 4 ℕ -2 ...-3;-2;-1;0;1;2;3... . Exemples : -2 ⅅ 3 1 3 ⅅ mais 3 4

2 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr 4. Nombres rationnels Un nombre rationnel peut s'écrire sous la forme d'un quotient

a b avec a un entier et b 1 3

2∉

1 3 3 ou

appartiennent à ℝ. 6. Ensemble vide Un ensemble qui ne contient pas de nombre s'appelle l'ensemble vide et se note

[-2 ; 7] -1 [-2 ; 7] 8 [-2 ; 7] 2 4 0 1

2x-3<4

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

5 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

2x-3<4

2x<4+3

2x<7 x< 7 2

L'ensemble des solutions est l'intervalle

7 2

. Exercices conseillés En devoir Exercices conseillés En devoir p37 n°37, 38 Ex 3, 4 (page8) p38 n°51 Ex 2 (page8) p43 n°14, 15 p48 n°56 Ex 3, 4 (page8) Ex 2 (page8) ODYSSÉE 2de HATIER Edition 2010 ODYSSÉE 2de HATIER Edition 2014 2. Intervalle ouvert et intervalle fermé : Définitions : On dit qu'un intervalle est fermé si ses extrémités appartiennent à l'intervalle. On dit qu'il ouvert dans le cas contraire. Exemples : - L'intervalle [-2 ; 5] est un intervalle fermé. On a : -2

[-2 ; 5] et 5 [-2 ; 5] - L'intervalle ]2 ; 6[ est un intervalle ouvert. On a : 2 ]2 ; 6[ et 6 ]2 ; 6[ - L'intervalle ]6;+∞[

est également un intervalle ouvert. 3. Intersections et unions d'intervalles : Définitions : - L'intersection de deux ensembles A et B est l'ensemble des éléments qui appartiennent à A et à B et se note A

B. - La réunion de deux ensembles A et B est l'ensemble des éléments qui appartiennent à A ou à B et se note A

B.

6 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

A∩B

A∪B

Méthode : Déterminer l'intersection et la réunion d'intervalles Vidéo https://youtu.be/8WJG_QHQs1Y Vidéo https://youtu.be/hzINDVy0dgg Dans les cas suivants, déterminer l'intersection et la réunion des intervalles I et J : 1) I =[-1 ; 3] et J = ]0 ; 4[ 2) I = ] -∞ ; -1] et J = [1 ; 4] 1) Pour visualiser les ensembles solutions, on peut représenter les intervalles I et J sur un même axe gradué. Les nombres de l'intersection des deux ensembles sont les nombres qui appartiennent à la fois aux deux ensembles. Il s'agit donc de la zone de l'axe gradué où les deux ensembles se superposent. Ainsi I

J = ]0 ; 3]. Les nombres de la réunion des deux ensembles sont les nombres qui appartiennent au moins à l'un des deux ensembles. Il s'agit donc de la zone de l'axe gradué marquée soit par l'intervalle I soit par l'intervalle J. Ainsi I ∪J = [-1 ; 4[. I 0 1 J I

J 0 1

7 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr 2) I

J = , car les ensembles I et J n'ont pas de zone en commun. I

J = ] -∞ ; -1]

[1 ; 4] Exercices conseillés En devoir Exercices conseillés En devoir p38 n°53 et 54 p37 n°39 p38 n°52 Ex 5, 6 (page8) p37 n°41 p37 n°40 p17 n°17, 18 p48 n°57 p43 n°16 Ex 5 (page8) Ex 6 (page8) ODYSSÉE 2de HATIER Edition 2010 ODYSSÉE 2de HATIER Edition 2014 I ∪J 0 1 I 0 1 J Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur. www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs46.pdfusesText_46