[PDF] Racine carr e - Exercices corrig s - académie de Caen



Previous PDF Next PDF







PUISSANCES ET RACINES CARRÉES

6 sur 7 Yvan Monka – Académie de Strasbourg – www maths-et-tiques 4) Simplifier les écritures contenant des racines carrées Méthode : Simplifier une écriture contenant des racines carrées



Racine carr e - Exercices corrig s - académie de Caen

Remplaçons, dans l’expression A, ces racines carrées par leurs écritures simplifiées Nous avons : A = 2 ×2 5 − 3 5 + 5 5 A = 4 5 − 3 5 + 5 5 = ( 4 – 3 + 5 ) 5 = 6 5 A = 6 5 Remarque : Une autre rédaction est souhaitée Au lieu de simplifier séparément les différentes racines,



Racine carrée - Free

On a : ab 2 =ab en appliquant la définition des racines carrées, et a× b 2 = a 2 × b 2 =ab On en déduit que : ab= a× b La racine carrée du produit de deux nombres positifs est le produit des racines carrées de ces nombres On démontre qu'il en va de même pour les quotients



Racines carrées (cours de troisième)

La présence de racines carrées dans des expressions numériques ou algébriques n’entraîne aucune modification des règles que l’on utilise pour les développements Voici quelques exemples : A = ( 2 + 5 ) 2 = ( )2 2 + 2 × 2 × 5 + 5 2 = 2 + 10 5 + 25 = 27 + 10 5 B = ( 2 x – 7 ) 2 = ( 2 x) 2 – 2 × 2 × 7 + 7 2 = 2x 2 – 14 2 + 49



Exercices de révisions : Racines carrées

Réduis les expressions suivantes et écris la réponse sous la forme d’une fraction dont le dénominateur est un entier (les lettres représentent des nombres positifs non nuls) 1 √75 √3 2 √72 √80 3 √300 √288 4 √243 √1200 5 √50 √72 6 √480 √120 7 √84 √189 8 √0,45 √1,25



Chapitre N3 : Racines carrées

Sans calculatrice, calcule les nombres suivants : A = 5× 45 ; B = 5× 2 × 10 b Calcule de même D= 2× 18 et E= 27 × 6× 8 c Développe et réduis les expressions suivantes : F=3 2 7 2− 5 ; G= 7 2 15− 3 4 Application aux simplifications de racines a



Fonction Racine carrée - Meilleur en Maths

Résoudre les équations suivantes: a x >2 b x < 4 c x –5 < 2 d 3–x > 1 e 3 x + 1 ≥2 Exercice 2: Exprimer sans racine carrée au dénominateur a 1 2–3 b 1– 3 1 3 c 2– x x 3 d 2 x 1–1 Exercice 3: Soit f la fonction définie sur ℝ par f x = x2 2x 5 1 Démontrer que, pour tout réel x, f x –2=



QCM( CM(RACINE CARREE) - Meabilis

Cocher toutes les bonnes r A La racine carrée de 8 n'existe p B Le carré de -4 n'existe p C xiste pas est égale à -7 est égale à 7 est égal xiste pas est égale à 0,0001 est égale à 0,001 est ég 0,1 es réponses Il peut y en avoir plusieurs xiste pas est inférieure à 4 est égale à 4 est égal



Chapitre : Puissances et racines

II Les racines carrées Définition des racines carrées : Considérons un nombre x positif On note x et on lit "racine carrée de x " le nombre positif dont le carré est x Pour la calculer, on utilise la touche " " de la calculatrice Exemples : 49 = 7 10 ≈ 3,16 0 = 0 1 = 1

[PDF] Les racines carrée je ne comprends rien, devoir demain là dessus

[PDF] Les Racines carrées

[PDF] Les racines carrées

[PDF] Les racines carrées !

[PDF] les racines carrées (réduire une expression)

[PDF] Les Racines Carrées - Niveau 3eme

[PDF] Les racines carrées - sujet de brevet

[PDF] Les racines carrées appliquées en géométrie

[PDF] Les Racines carrées DM

[PDF] Les racines carrés

[PDF] Les racines carrés

[PDF] Les racines carrés

[PDF] Les racines carrés (a m'expliquer)

[PDF] Les Racines Carrés 3e

[PDF] les racines carres dm de maths

Exercice 1:

Simplifier les écritures suivantes :

8 6 + 50 3 - 32 2 = D 54 3 - 24 2 - 6 2 + 96 = C 12 5 + 48 3 - 3 7 = B 125 + 45 - 20 2 = A

Correction :

? 125 45 - 20 2 A+= Simplifions les différentes racines de cette expression.

Nous avons :

5 2 5 2 5 4 5 4 20=´=´=´=

5 3 5 3 5 9 5 9 45=´=´=´=

5 5 5 5 5 25 5 25 125=´=´=´=

Remplaçons, dans l"expression A, ces racines carrées par leurs écritures simplifiées.

Nous avons :

A =

55 5 3 52 2+-´

A =

55 5 3 54+-= ( 4 - 3 + 5 ) 5 = 65 A = 5 6

Remarque : Une autre rédaction est souhaitée. Au lieu de simplifier séparément les différentes racines,

nous pouvons, dans l"expression A, les simplifier simultanément. ? B = 125 48 3 37+-

Nous avons successivement :

B =

3 45 12 4 3 37´+´-

B =

3 45 12 4 3 37´+´-

B =

3 2 5 12 2 3 37´´+´´-

B =

310 12 6 37+-

B =

12 6 317-

Nous devons continuer et simplifier

12 B =

34 6 317´-= 32 6 317´´-= 312 317- = 35

La simplification de 48 a été exécutée en deux étapes. La rédaction pouvait être plus rapide en

constatant que 48 =

3 16´. Nous obtenons alors :

B =

3 4 5 3 163 37´+´-

B =

3 4 5 3 163 37´+´-

B =

3 2 5 3 4 3 37´´+´´-

THEME :

RACINE CARREE

EXERCICES CORRIGES

Les carrés parfaits : ( sauf 1 )

4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 , 100 , ...

et la racine carrée de ces carrés parfaits :

4 = 2 , 9 = 316 = 4 ,25 = 5 ,

36 = 6 , 49 = 7 , ...

B = 310 312 37+-= 35 B = 35

? C = 54324262 96--+

Essayons de déterminer dans chaque radicande ( nombre situé sous le radical ) le carré parfait le plus

grand possible. C =

6 936 4262 6 16´-´-+´

C =

6 936 4262 6 16´-´-+´

C = 63 362 262 64´-´-+

C = 696462 64--+= 67- C = 67-

? D = 86503322+-

D = 2 462 2532 162´+´-´

2 462 2532 162´+´-´

D = 2 2 62 5 32 4 2´´+´´-´´

D = 2122 152 8+- = 25 D = 25

Exercice 2:

Simplifier les expressions suivantes :

) 1 - 2 )( 1 + 2 2 ( - ) 1 - 2 3 ( = E) 5 - 3 ( - ) 5 + 3 ( = D ) 2 - 3 )( 2 + 6 ( = C) 5 + 2 )( 5 - 2 2 ( = B ) 2 - 2 )( 1 - 2 ( = A

222

Correction :

? ) 2 - 2 )( 1 - 2 ( A=

2 1 2 1 - 2 2 - 2 2 A´+´´´= =

2 2 - ² 2( - 22 A+=) mais ² 2() = 2

A =

2 2 - 2 - 22+

23 4 - A+= 23 4 - A+=

? ) 5 2 )( 5 - 22 ( B+=

B 55 - 2 5 - 522 2 22 ´´´+´=

B )²5( - 2 5 - 522 )²22( ´´+= Sachant que ² 2() = 2 , que )²5( = 5 et que 52´= 2 5´= 10 , nous avons : B =

5 - 10 - 102 2 2 +´ 5 - 10 - 102 4 += = 10 1-+ 10 1 - B+=

? ) 2 - 3 )( 2 6 ( C+=

2 2- 3 2 2 6 - 3 6 C´´+´´=

22- 3 2 2 6 - 3 6 C+´´=

22- 3 2 12 - 18 C+=

Simplifions maintenant 18 et 12. Nous avons :

22- 3 2 3 4 - 2 9 C+´´=

22- 3 2 3 4 -2 9 C+´´=

22- 3 2 32 -23 C+== 2 2 C=

Remarque : Il existait ici une autre façon de simplifier cette expression. ) 2 - 3 )( 2 6 ( C+=

Le premier facteur

2 6+ peut s"écrire ( en factorisant ) :

2 6+ = )²2( 3 2+´ = 2 2 3 2´+´ = ) 2 3( 2+´

) 2 - 3 )( 2 6 ( C+== ) 2 - 3 )( 2 3( 2+= )²] 2( )²3[( 2- C =

2] - [3 2 = 2 1 2=´

? )² 5 3 ( - )² 5 3 ( D-+= )²] 5(53 2 )² 3 [( - )²] 5(53 2 )² 3 [( D+´´-+´´+= ] 553 2 3 [ - ] 5 53 2 3 [ D+-++=

En écrivant

53 sous la forme 15 et en supprimant les parenthèses, nous obtenons :

515 2 3 - 5 15 2 3 D-+++= = 15 215 2+= 15 4 15 4 D=

? ) 1 2 )( 1 22 ( - 1)²2 (3 E-+-= ) 1 2 2 2- )²22( ( - 1²] 1 2 3 2)²2 [(3 E-++´´-= ) 1 2 2 2- 2 2 ( - ] 1 2 6)²2 3²( [ E-+´+-= ) 1 2 2 2- 4 ( - 1] 2 62 9 [ E-++-´= ou ) 2 3 ( - ] 2 6[19 E--=

1 2 2 2 4 - 1 2 618 E+-++-= ou 2 3 - 2 619 E+-=

2 516 E-=

Exercice 3:

On donne les nombres :

3 5 2 b et 3 - 5 2 a+==

Calculer a + b , a - b , a² + b² , ab et ( a + b )²

Correction :

? Calcul de a + b : Remplaçons a et b par les valeurs données ci-dessus.

Attention, toute valeur doit être considérée comme une valeur entre parenthèses ( Il est vrai que si

cette valeur est simple, les parenthèses sont omises ) Si a = 2 , il faut lire a = ( 2 ) ( ici les parenthèses sont inutiles )

Si a = - 3 , il faut lire a = ( - 3 )

Si a =

5, il faut lire a = (5 )

Si a =

23 -, il faut lire a = (23 - )

Si a =

352-, il faut lire a = (352- )

a + b = ) 352 ( ) 352 (++- a + b =

352 352++- = 54 a + b = 54

? Calcul de a - b : a - b = ) 352 ( ) 352 (+-- a - b =

352 352--- = - 6 a - b = - 6

? Calcul de a² + b²: a² + b² = )² 352 ( )² 352 (++- a² + b² = ] 3² 512 )² 5(2 [ ] 3² 512 )² 5(2 [++++- ) 1 2 2 2- 4 ( - 1] 2 618 [ E-++-=

2 516 E-=

a² + b² = ] 9 512 )² 52²( [ ] 9 512 )² 52²( [++++- a² + b² = ] 9 512 54 [ ] 9 512 54 [++´++-´ a² + b² = ] 9 512 20 [ ] 9 512 20 [++++- a² + b² = ]512 29 [ ]512 29 [++- = 512 29 512 29++- = 58 a² + b² =

9 512 20 9 512 20++++- = 20 + 9 + 20 + 9 = 58

a² + b² = 58 ? Calcul de ab : ab = ) 352 )( 352 ( b a+-=´ ab = 3² )²52 (- = 3² )²52²(- = 9 5 4-´= 20 - 9 = 11 ab = 11 ? Calcul de ( a + b )² : ( a + b )² = )]² 352 ( ) 352 [(++- ( a + b )² = ]² 352 352 [++- ( a + b )² = ]² 54 [ ( a + b )² = )²54²( = 5 16´ = 80 ( a + b )² = 80 Exercice 4: d"après Brevet des Collèges - Poitiers - 1990

Prouver que

12 5 75 2 - 2 8 +´est un nombre entier . ( le symbole "x" est le

symbole de la multiplication )

Correction :

2 8´ = 16= 4 (d"après la propriété b ab a´=´ qui doit également se lire b a b a´=´)

L"expression à calculer est donc égale à ( nous appellerons A cette expression ) : A =

12 57522 8+-´

A = 3 4 53 25216´+´-

A =

3 4 53 2524´+´-

A = 3 2 53 5 24´´+´´-

A =

3103104+- = 4 A = 4 donc A est un entier

Remarque :

Le premier terme pouvait également être simplifier comme suit :

4 2 2 )² 2 ( 2 224 22 4 28=´=´=´´=´´=´

Exercice 5:

Les côtés d"un triangle IJK ont pour longueurs : IJ = 2 3 + 3 IK = 3 3 - 2 et JK = 2 13

Démontrer que le triangle IJK est rectangle .

Correction :

Recherche du plus grand côté :

A l"aide de la calculatrice , nous constatons que : IJ = »+ 332 6,46 IK »- 2 33 3,19 et JK = »132 7,21 Par conséquent , si le triangle IJK est rectangle , il ne peut être rectangle qu"en I.

Le triangle IJK est-il rectangle en I ?

Nous avons ( calculs séparés ) :

? JK² = 52 13 4 )² 13( 2² )²13(2=´=´= ? IJ² + IK² = )² 2 33 ( )² 3 32 (-++ IJ² + IK² = ] 2² 312 )² 33 [( ] 3² 312 )²32 [(+-+++

IJ² + IK² =

] 4 312 )² 33²( [ ] 9 312 )²32²( [+-+++ IJ² + IK² = ] 4 312 3 9 [ ] 9 312 3 4 [+-´+++´ IJ² + IK² = ] 4 312 27 [ ] 9 312 12 [+-+++ Continuons le calcul dans chaque parenthèse ou supprimons les :

IJ² + IK² =

4 312 27 9 312 12+-+++ = 12 + 9 +27 + 4 = 52

Ces deux calculs permettent d"écrire que :

JK² = IJ² + IK²

Donc, d"après la réciproque du théorème de Pythagore, le triangle IJK est rectangle en I

Exercice 6: Brevet des Collèges - Caen - 1994

Soit l"expression C = x² - 6x + 7

Correction :

? Si x = 5 , nous avons : C =

7 5 6)² 5(+´-

C =

7 5 65+´-= 12 - 6 5 5612 C-=

? Si x = 2 3+ ou (2 3+ ), nous avons :

7 )2 (3 6)²2 (3 C++´-+=

7 )2 (3 6)²] 2 ( 26 3² [ C++´-++=

7 )2 (3 6] 2 26 9 [ C++´-++=

7 2 6 18 2 26 9 C+--++=

2 6 26 7 18 2 9 C-++-+= = 0 C = 0

Exercice 7: Brevet des Collèges - Reims - Septembre 93 Effectuer le calcul suivant en donnant le résultat sous la forme

2 a , a étant un entier

relatif .

50 - )2 ( 3 2 8 - 8 2 B

3+=

Correction :

50)2( 3 2 8 82 B

3-+-=

Si nous regardons l"expression, nous pouvons constater que nous devons simplifier chacun des termes .

8 se simplifie sans problème, ainsi que 50 . La difficulté provient du troisième terme

3)2( 3 .

Aucune propriété liant les racines carrées et l"élévation à la puissance 3 n"est connue. Revenons donc à la

définition de l"élévation au cube.

Nous avons :

2 3 x pour C b)Calculer. relatifs entiers des sont b et a où 5 b a forme la sous résultat le écrire et 5 x pour C a)Calculer+=+=

222 )2(

3´´== 2)²2(´= 22´

Remplaçons donc

3)2( par 22´

Nous avons :

2 2522 3 2 8 2 42 B´-´´+-´=

22522 3 2 8 242 B´-´´+-´=

2522 3 2 8 22 2 B´-´´+-´´=

2526 2 8 24 B-+-=

23 B-= 23 B-=

Exercice 8:Brevet des Collèges - Nice - Montpellier - Toulouse - 1991 Développer et écrire le plus simplement possible : )7 2 3 )( 3 2 2 ( )² 2 5 4 ( D++++=

Correction :

D = )7 2 3 )( 3 2 2 ( )² 2 5 4 (++++

D = ) 21 2 9 2 14 )²2( 6 ( ] )²2 5 ( 2 40 4² [++++++ D = ) 21 2 9 2 14 2 6 ( ] )²2( 5² 2 40 16 [+++´+´++ D = ) 21 2 9 2 14 12 ( ] 2 25 2 40 16 [++++´++ D = ) 21 2 9 2 14 12 ( ] 50 2 40 16 [++++++ D =

21 2 9 2 14 12 50 2 40 16++++++

D =

2 9 2 14 2 40 21 12 50 16++++++ = 2 63 99+ D = 2 63 99+

quotesdbs_dbs46.pdfusesText_46