[PDF] Structures Algébriques 1 : Résumé de cours



Previous PDF Next PDF







Structures algébriques - MATHEMATIQUES

Si ∗ est la composition des applications, les éléments de EE qui admettent un symétrique pour la loi sont les bijections de E sur E Le symétrique d’une bijection f pour la loi n’est autre que sa réciproque f−1 Théorème 3 Soient E un ensemble non vide puis ∗ une loi de composition interne sur E, associative et possédant un



Structures Algébriques 1 : Résumé de cours

2 2 Exemple : les sous groupes de Z Théorème et définition 1 1 (division euclidienne) Pour tout couple d’entiers relatifs (a,b) avec b 6= 0, il existe un unique couple (q,r) d’entiers relatifs tels que (a = bq +r 0 r < jbj (1 1) Les entiers q et r s’appellent respectivement le quotient et le reste de la division eucli-dienne de a par



Structures alg´ebriques : groupes, anneaux et corps

•Les lois ∪, ∩et ∆ sur P(F) sont associatives et commutatives Elles admettent pour neutres respectifs ∅, F, et ∅ •⊕et ⊗sont associatives et commutatives sur R2 •Vue comme LCI sur N∗, + n’admet pas d’´el´ement neutre Exercice 1 Montrer que les lois ⊕et ⊕sur R2 (cf exemples 1) admettent chacune un neutre



Exercices sur les structures algébriques : corrigé

Exercices sur les structures algébriques : corrigé PCSI 2 Lycée Pasteur 3 novembre 2007 Exercice 1 Un groupe à un élément est un ensemble E constitué d'un seul élément e, et la lci ∗ est nécessai-



Feuille de TD 4 - Structures algébriques - Arithmétique

Exercice 11 Les questions sont indépendantes 1 Déterminer, suivant les aleursv de n2Z, le PGCD de 5n 9 et 2n 6 2 Quel est le PPCM de net 2n+1, n2Z? Exercice 12 Soient a;bet ctrois entiers non nuls Montrer les deux propriétés suivantes : 1 a^b= 1 et a^c= 1 ()a^bc= 1 2 a^c= 1 =)a^(bc) = a^b Exercice 13 1



ENSEMBLES, STRUCTURES ALGEBRIQUES

Vous ne pouvez pas télécharger les fichiers de mon site pour les installer sur le vôtre ENSEMBLES, STRUCTURES ALGEBRIQUES PLAN I : Vocabulaire 1) Règles usuelles et notations 2) Logique 3) Introduction à la démonstration 4) Fonctions, injections, surjections 5) Ensembles finis 6) Relation d'équivalence 7) Relation d'ordre II



Structures algébriques (groupes) Corrigé de l’examen partiel

L2parcoursspécial–Mathématiques 9novembre2016 Structures algébriques (groupes) Corrigé de l’examen partiel Lebarêmeestsur21,5 I - Exemples (5 points)



Exo7 - Cours de mathématiques

et les ensembles, qui sont des fondamentaux en mathématiques Ensuite vous étudierez des ensembles particuliers : les nombres complexes, les entiers ainsi que les polynômes Cette partie se termine par l’étude d’une première structure algébrique, avec la notion de groupe La seconde partie est entièrement consacrée à l’algèbre



New Publications Offered by the AMS

sur les courbes algèbriques; Bibliographie; Index Cours Spécialisés—Collection SMF, Number 8 May 2001, 160 pages, Softcover, ISBN 2-86883-522-8, 2000 Mathematics Subject Classification: 70H06, 53C15, 12Hxx, 34A30, 14H10, 14Pxx, Individual member $30, List $33, Order code COSP/8N Differential Equations Cohomological Analysis of Partial

[PDF] les structures algébriques exercices corrigés pdf

[PDF] les structures de données cours informatique

[PDF] les structures de l'entreprise pdf

[PDF] les structures de l'entreprise résumé

[PDF] les structures organisationnelles de l'entreprise

[PDF] Les subordonnées : Alors que et tandis que, ils expriment l'opposition, le temps ou les deux

[PDF] les subordonnées conditionnelles

[PDF] LES SUBORDONNES SVP !!

[PDF] Les substitus et leurs référents!Urgent besoin d'aide!!!

[PDF] les substituts exercices

[PDF] les substituts grammaticaux 1am

[PDF] les substituts grammaticaux exercices 3am

[PDF] les substituts grammaticaux pdf

[PDF] les substituts lexicaux et grammaticaux 3am

[PDF] les substituts lexicaux et grammaticaux exercices corrigés pdf

Université de Bordeaux

Licence de Sciences, Technologies, Santé

Mathématiques, Informatique, Sciences de la Matière et Ingénierie

Structures Algébriques 1 :

Résumé de cours

Table des matières

1 Théorie des groupes 5

1 Définition et premiers exemples . . . . . . . . . . . . . . . . . . . . . . .

5

2 Sous-groupes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

2.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

2.2 Exemple : les sous groupes deZ. . . . . . . . . . . . . . . . . .6

3 Ordre d"un élément . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

4 Sous-groupe engendré par une partie . . . . . . . . . . . . . . . . . . .

9

5 Le Théorème de Lagrange . . . . . . . . . . . . . . . . . . . . . . . . . .

11

5.1 Rappel : relations d"équivalence . . . . . . . . . . . . . . . . . .

11

5.2 Classes modulo un sous-groupe . . . . . . . . . . . . . . . . . .

11

2 Le groupe des permutations 13

1 Définitions et premières propriétés . . . . . . . . . . . . . . . . . . . . .

13

2 Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

3 Décomposition en cycles disjoints . . . . . . . . . . . . . . . . . . . . . .

16

4 Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

3 Morphismes, sous-groupes normaux, groupes quotients et théorème de fac-

torisation 21

1 Morphismes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

1.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

1.2 Noyau, image . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22

2 Sous-groupes normaux . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

3 Sous-groupes normaux et morphismes : le théorème de factorisation .

25

4 Actions de groupes 27

1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

2 Exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

3 Équation des classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

4 Une application : le théorème de Cauchy . . . . . . . . . . . . . . . . .

28

5 Anneaux 31

1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

2 L"anneau

(Z/nZ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 3

3 Morphismes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

4 Corps finis(non traité en cours). . . . . . . . . . . . . . . . . . . . .36

6 Idéaux 39

1 Idéaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

2 Anneaux principaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40

2.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40

2.2 Exemple : les anneaux euclidiens . . . . . . . . . . . . . . . . . .

40

3 Arithmétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41

3.1 PGCD, PPCM, Bézout, Gauss . . . . . . . . . . . . . . . . . . . .

41

3.2 Décomposition en produit d"irréductibles . . . . . . . . . . . . .

43

7 Polynômes et fractions rationnelles 45

1 Définitions et premières propriétés . . . . . . . . . . . . . . . . . . . . .

45

2 Division euclidienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

47

3 Racines et multiplicités . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48

4 Polynômes irréductibles . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

5 Dérivées successives, formule de Taylor et applications(non traité

en cours). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

6 Fractions rationnelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

6.1 Corps des fractions d"un anneau intègre . . . . . . . . . . . . . .

52

6.2 Le corps des fractions rationnellesK(X). . . . . . . . . . . . . .53

4

Chapitre 1

Théorie des groupes

1 Définition et premiers exemplesDéfinition 1

Un groupe est la donnée d"un ensemble G et d"uneloi de composition interne GG!G (x,y)7!xy qui vérifie les propriétés suivantes :

1 )la loiest associative :8(x,y,z)2G3,x(yz) = (xy)z

2 )il existe un élément e2G, qu"on appelleélément neutre, qui est tel que :

forallx2G,xe=ex=x

3 )tout élément de G admet uninverse:8x2G,9y2Gjxy=yx=e.Proposition 1

Dans un groupe(G,):

1 )l"élément neutre est unique,

2 )tout élément x admet un unique inverse, que l"on note x1,

3 )e1=e,(x1)1=x pour tout élément x de G, et(xy)1=y1x1pour

tout couple(x,y)d"éléments de G.

Exemples:

•(Z,+) •(R,) 5 •(Z/nZ,+) •(Sn,) •(GLn(R),) racines de l"unit é. pr oduitdir ectde de uxgr oupes.

2 Sous-groupes

2.1 DéfinitionsDéfinition 2

Soit G un groupe noté multiplicativement. Une partie non vide H de G est un sous- groupe si

1 )8(x,y)2H2,xy2H

2 )8x2H,x12H.

Remarquons en particulier qu"un sous-groupe d"un groupeGcontient nécessaire- ment l"élément neutre deG. Clairement, la loi de groupe deG, quand on la restreint à un sous-groupeH, induit une structure de groupe surH. En pratique, on montrera souvent qu"un ensemble, muni d"une loi de composition interne est un groupe en l"identifiant à un sous-groupe d"un groupe connu.

La proposition suivante fournit une caractérisation très utile pour un sous-groupe :Proposition 2

Soit H une partie non vide d"un groupe G noté multiplicativement. Alors H est un sous- groupe si et seulement si

8(x,y)2H2,xy12H.

2.2 Exemple : les sous groupes deZThéorème et définition 1.1 (division euclidienne)

Pour tout couple d"entiers relatifs(a,b)avec b6=0, il existe un unique couple(q,r) d"entiers relatifs tels que( a=bq+r

0r Les entiers q et r s"appellent respectivement le quotient et le reste de la division eucli- dienne de a par b. 6

Preuve.

Existence : il y a deux cas à considérer, selon le signe dea. -sia0, on poseq0=maxfk2Ntels quekjbj ag,r=a jbjq0et q=q0ouq0selon quebest positif ou négatif. -sia<0, on poseq1=minfk2Ntels quekjbj ag,r=a+jbjq1et q=q1ouq1selon quebest négatif ou positif.

Unicité : facile.

Définition 3

1 )Le PGCD de deux entiers relatifs a et b non tous les deux nuls est l"entier d défini

par : d:=maxfk2Njk divise a et bg

2 )Le PPCM de deux entiers relatifs a et b non nuls est l"entier m défini par :

m:=minfk2Njk est un multiple commun à a et bg Notation: si a est un entier (quelconque), on noteaZl"ensemble de ses multiples.

Autrement dit

aZ=fam,m2Zg=fn2Zj 9m2Z,n=amg. De même, siaetbsont deux entiers, on définit aZ+bZ=fax+by,x,y2Zg=fn2Zj 9x,y2Z2Z,n=ax+byg.Proposition 3

1 )Pour tout entier a, l"ensemble aZest un sous-groupe deZ.

2 )Si a et b sont des entiers, on a l"équivalence : aZbZ,b divise a.

3 )Si a et b sont des entiers, l"ensemble aZ+bZest un sous-groupe deZ.Théorème 1

Soit F un sous-groupe deZ. Alors, il existe un unique entier naturel g tel que F=gZ. que son opposéx, donc il contient un élément strictement positif. Par conséquent, 7 l"ensembleF+=fx2Fjx>0gNest non vide. Il admet donc, comme toute partie non vide deN, un plus petit élément notég. Clairement,gappartient àF, ainsi que tous ses multiples, doncgZF. Inversement, siaest un élément (quelconque) deF, on peut effectuer la division euclidienne deaparg: a=gq+r, avecq,r2Zet 0r0, cela contredirait la définition deg, doncr=0, ce qui signifie que a2gZ.Corollaire 1 Soient a et b deux entiers non tous les deux nuls. On note d leur PGCD et m leur PPCM.

1 )aZ+bZ=dZet aZ\bZ=mZ.

2 )(Théorème de Bézout) SiPGCD(a,b) =d alors il existe deux entiers u et v tels

que au+bv=d.

3 )Le PGCD de a et b est le "plus grand diviseur commun" à a et b au sens de la

relation d"ordre usuelle surZ, mais également au sens de la relation de divisibilité.

4 )Le PPCM de a et b est le "plus petit multiple commun" à a et b au sens de la

relation d"ordre usuelle surZet au sens de la relation de divisibilité. Remarque :on peut donc définir le PGCD (resp. le PPCM) de deux entiersaetb comme le générateur positif du sous-groupeaZ+bZ(resp.aZ\bZ). Si l"on adopte ce point de vue il n"y a plus lieu de conserver la restriction à"a et b non tous les deux nuls"dans la définition du PGCD et du PPCM, et on peut donc éventuellement poser

PGCD(0,0) =PPCM(0,0) =0.

3 Ordre d"un élémentDéfinition 4

Soit G un groupe dont la loi est notée multiplicativement. On dit qu"un élément x de G estd"ordre finis"il existe un entier naturel non nul k tel que xk=e. Si tel est le cas on appelleordre dex le plus petit entier k2N?tel que xk=e.Proposition 4 Soit x un élément d"ordre n d"un groupe G dont la loi est notée multiplicativement. Alors on a, pour tout m2Z, l"équivalence x m=e,n divise m. 8

Preuve.On définit, pour toutxdeG, l"ensemble

E(x) =n

k2Zjxk=eo auquel cas l"ordre dexest le générateur positif deE(x). La proposition en découle. Remarque :sixest d"ordren, les élémentsx0=e,x,x2,...,xn1sont deux à deux distincts. En particulier, l"ordre d"un élement d"un groupeGfini est majoré par le cardinal du groupe. On verra plus loin (théorème de Lagrange) qu"on a en fait une majoration beaucoup plus forte.

4 Sous-groupe engendré par une partieProposition 5

d"un groupe G est un sous-groupe de G. B La réunion de deux sous-groupes n"est en revanche pas un sous-groupe en géné- ral. Ce n"est même essentiellement "jamais" le cas, comme le montre l"énoncé suivant (exercice) "Si H et K deux sous-groupes d"un groupe G. Alors H[K est un sous-groupe de G si et seulement si HK ou KH."

La proposition 5 permet de définir la notion de sous-groupe engendré par une partie :Définition 5

Soit S une partie d"un groupe G. On appelle sous-groupe engendré par S, et on note hSi le plus petit sous-groupe contenant S. C"est l"intersection de tous les sous-groupes de G qui contiennent S. La définition ci-dessus est peu exploitable en pratique. On dispose de la description plus explicite suivante :Proposition 6 Soit G un groupe. Alors le sous-groupe engendré par une partie S de G est l"ensemble des éléments de la forme x #11x#22...x#rroù : r est un entier na turelnon nul, les x isont des éléments de S, •#i=1pour tout i. 9 SiS=fxgest une partie réduite à un élément d"un groupeG, on notehxile sous- groupe engendré parS. Ce cas particulier important conduit à la notion degroupe monogène.Définition 6quotesdbs_dbs46.pdfusesText_46