[PDF] Power Series Solutions to the Bessel Equation



Previous PDF Next PDF







An Introduction to Bessel Functions

Bessel’s equation Frobenius’ method Γ(x) Bessel functions For 0 < p < 1, the graph of J p has a vertical tangent line at x = 0 For 1 < p, the graph of J p has a horizontal tangent line at x = 0, and the graph is initially “flat ” For some values of p, the Bessel functions of the first kind can be expressed in terms of familiar



Math 456 Lecture Notes: Bessel Functions and their

3 Bessel Function The Bessel function J s(z) is de ned by the series: J s(z) = z 2 sX1 k=0 ( 1)k k( s+ k+ 1) z 2 2k (29) This series converges for all zon the complex plane, thus J s(z) is the entire function If z0, then J s(z) z 2 s 1 ( s+ 1) (30) If s2 is not an integer, then J s(z) is the second solution of the Bessel equation Now: J s



1 Etude de la fonction Beta - WordPresscom

2 Soit yune solution non identiquement nulle de l'équation de Bessel (E) sur R + pour une aleurv de xée On considère la fonction auxiliaire udé nie par : u(x) = p xy(x) pour tout réel strictement positif x En appliquant la règle de Leibniz : u00= p xy00+ 1 p x y0 4x3=2 y= x3=2 x2y00+ xy0 4 y = x2 2 4 x2 u



Power Series Solutions to the Bessel Equation

Power Series Solutions to the Bessel Equation Note:The ratio test shows that the power series formula converges for all x 2R For x



N d™ordre : /2007-M/MT

n (z);connue sous le nom de "fonction de Bessel d™ordre nde premiŁre espŁce", est dØ–nie, lorsque nest un entier positif, par la sØrie de puissance [voir le paragraphe 2 2 1] [4]



ON BESSEL FUNCTIONS AND RATE OF CONVERGENCE OF ZEROS OF

ON BESSEL FUNCTIONS AND RATE OF CONVERGENCE Coulomb, Sur les zéros des fonctions de Bessel considérées comme fonction de l'ordre, Bull Sei Math 60 (1936



On the values of the function zeta and gamma - viXra

Prenons un autre exemple avec la fonction de Bessel , 4 : T Les zéros se situent à intervalles d’à peu près è, le premier est 2 40483, 5 52008, 8 65373, 11



SUPPORT DE CALCUL - ResearchGate

2 5 Fonctions de BESSEL où : mest la fonction de BESSEL de la première espèce d’ordre et est la fonction de BESSEL de la seconde espèce de même ordre m



corrigé des fiches reproductibles

2) Une fonction polynomiale de degré 4 constitue le meilleur modèle pour cette situation, car le nuage de points montre une tendance associée à ce type de fonction 3) y 0,8 b) 1) 2) Une fonction de Bessel constitue le meilleur modèle pour cette situation, car le nuage de points montre une tendance associée à ce type de fonction 3) y 4



SciPy - Télécharger et lire cours informatique en PDF

SciPy fournit deux façons de résoudre les EDO: Une API basée sur la fonction odeint, et une API orientée-objet basée sur la classe ode odeint est plus simple pour commencer

[PDF] fonction de bessel modifiée

[PDF] introduction ? la microéconomie varian pdf

[PDF] cours microeconomie 1 pdf

[PDF] cours de microéconomie licence 1 pdf

[PDF] corrélation multiple

[PDF] correlation multiple r

[PDF] exercice fonction cout de production

[PDF] corrélation multiple définition

[PDF] corrélation multiple spss

[PDF] coefficient de détermination multiple excel

[PDF] definition fonction de cout total

[PDF] corrélation entre plusieurs variables excel

[PDF] corrélation multiple excel

[PDF] fonction de cout marginal

[PDF] régression multiple excel

Power Series Solutions to the Bessel Equation

Power Series Solutions to the Bessel Equation

Department of Mathematics

IIT Guwahati

RA/RKSMA-102 (2016)

Power Series Solutions to the Bessel Equation

The Bessel equation

The equation

x

2y00+xy0+ (x22)y= 0;(1)

whereis a nonnegative constant, is called theBessel equation The pointx0= 0 is a regular singular point. We shall use the method of Frobenius to solve this equation.

Thus, we seek solutions of the form

y(x) =1X n=0a nxn+r;x>0;(2) witha06= 0.RA/RKSMA-102 (2016)

Power Series Solutions to the Bessel Equation

Dierentiation of (2) term by term yields

y 0=1X n=0(n+r)anxn+r1:

Similarly, we obtain

y

00=xr21X

n=0(n+r)(n+r1)anxn:

Substituting these into (1), we obtain

1 X n=0(n+r)(n+r1)anxn+r+1X n=0(n+r)anxn+r 1X n=0a nxn+r+21X n=0

2anxn+r= 0:RA/RKSMA-102 (2016)

Power Series Solutions to the Bessel Equation

This implies

x r1X n=0[(n+r)22]anxn+xr1X n=0a nxn+2= 0: Now, cancelxr, and try to determinean's so that the coecient of each power ofxwill vanish. For the constant term, we require (r22)a0= 0. Since a

06= 0, it follows that

r

22= 0;

which is the indicial equation. The only p ossiblevalues of r areand.RA/RKSMA-102 (2016)

Power Series Solutions to the Bessel Equation

Case I.

F orr=, the equations for determining the

coecients are: [(1 +)22]a1= 0 and; [(n+)22]an+an2= 0;n2:

Since0, we havea1= 0. The second equation yields

a n=an2(n+)22=an2n(n+ 2):(3)

Sincea1= 0, we immediately obtain

a

3=a5=a7== 0:RA/RKSMA-102 (2016)

Power Series Solutions to the Bessel Equation

For the coecients with even subscripts, we have

a

2=a02(2 + 2)=a02

2(1 +);

a

4=a24(4 + 2)=(1)2a02

42!(1 +)(2 +);

a

6=a46(6 + 2)=(1)3a02

63!(1 +)(2 +)(3 +);

and, in general a

2n=(1)na02

2nn!(1 +)(2 +)(n+):

Therefore, the choicer=yields the solution

y(x) =a0x 1 +1X n=1(1)nx2n2

2nn!(1 +)(2 +)(n+)!

RA/RKSMA-102 (2016)

Power Series Solutions to the Bessel Equation

Note: The ratio test sho wsthat the p owerseries fo rmula converges for allx2R. Forx<0, we proceed as above withxrreplaced by (x)r.

Again, in this case, we nd thatrsatises

r

22= 0:

Takingr=, we obtain the same solution, withxis

replaced by (x). Therefore, the functiony(x) is given by y (x) =a0jxj 1 +1X n=1(1)nx2n2

2nn!(1 +)(2 +)(n+)!

(4) is a solution of the Bessel equation valid for all realx6= 0.RA/RKSMA-102 (2016)

Power Series Solutions to the Bessel Equation

Case II.

Forr=, determine the coecients from

[(1)22]a1= 0 and [(n)22]an+an2= 0:

These equations become

(12)a1= 0 andn(n2)an+an2= 0:

If 2is not an integer, these equations give us

a

1= 0 andan=an2n(n2);n2:

Note that this formula is same as (3), withreplaced by.

Thus, the solution is given by

y (x) =a0jxj 1 +1X n=1(1)nx2n2

2nn!(1)(2)(n)!

(5) which is valid for all realx6= 0.RA/RKSMA-102 (2016)

Power Series Solutions to the Bessel Equation

Euler's gamma function and its properties

Fors2Rwiths>0, we dene (s) by

(s) =Z 1 0+ ts1etdt:

The integral converges ifs>0 and diverges ifs0.

Integration by parts yields the functional equation (s+ 1) =s(s):

In general,

(s+n) = (s+n1)(s+ 1)s(s);for everyn2Z+: Since (1) = 1, we nd that (n+ 1) =n!:Thus, the gamma function is an extension of the factorial function from integers to positive real numbers. Therefore, we write (s) =(s+ 1)s;s2R:RA/RKSMA-102 (2016)

Power Series Solutions to the Bessel Equation

Using this gamma function, we shall simplify the form of the solutions of the Bessel equation. Withs= 1+, we note that (1 +)(2 +)(n+) =(n+ 1 +)(1 +):

Choosea0=2(1+)in (4), the solution forx>0 can be

written J (x) =x2 1X n=0(1)nn!(n+ 1 +) x2 2n:

The functionJdened above forx>0 and0 is called

the

Bessel function of t herst kind

of o rder.RA/RKSMA-102 (2016)

Power Series Solutions to the Bessel Equation

Whenis a nonnegative integer, say=p, the Bessel

functionJp(x) is given by J p(x) =1X n=0(1)nn!(n+p)! x2

2n+p;(p= 0;1;2;:::):

This is a solution of the Bessel equation forx<0.Figure :The Bessel functions J0andJ1.RA/RKSMA-102 (2016)

Power Series Solutions to the Bessel Equation

If =2Z+, dene a new functionJ(x) (replacingby)

J (x) =x2 1X n=0(1)nn!(n+ 1) x2 2n:

Withs= 1, we note that

(n+ 1) = (1)(2)(n)(1): Thus, the series forJ(x) is the same as that fory(x) in (5) witha0=2(1);x>0. Ifis not positive integer,Jis a solution of the Bessel equation forx>0.

If =2Z+,J(x) andJ(x) are linearly independent on

x>0. The general solution of the Bessel equation forx>0 is y(x) =c1J(x) +c2J(x):RA/RKSMA-102 (2016)

Power Series Solutions to the Bessel Equation

Useful recurrence relations forJ

ddx (xJ(x)) =xJ1(x): ddx (xJ(x)) =ddx x 1X n=0(1)nn!(1 ++n) x2 2n+) ddx 1X n=0(1)nx2n+2n!(1 ++n)22n+) 1X n=0(1)n(2n+ 2)x2n+21n!(1 ++n)22n+:

Since (1 ++n) = (+n)(+n), we have

ddx (xJ(x)) =1X n=0(1)n2x2n+21n!(+n)22n+ =x1X n=0(1)nn!(1 + (1) +n) x2 2n+1 =xJ1(x):RA/RKSMA-102 (2016)

Power Series Solutions to the Bessel Equation

The other relations involvingJare:

ddx (xJ(x)) =xJ+1(x): x

J(x) +J0(x) =J1(x):

x

J(x)J0(x) =J+1(x):

J1(x) +J+1(x) =2x

J(x):

J1(x)J+1(x) = 2J0(x):

Note:

W orkoutthese relations.

*** End ***

RA/RKSMA-102 (2016)

quotesdbs_dbs7.pdfusesText_13