[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES



Previous PDF Next PDF







Les suites

de , mais d'une formule permettant de calculer en fonction des termes précédents On calcule ainsi en calculant systématiquement tous les termes de la suite de proche en proche à l'aide de la formule donnée Exemple Soit la suite définie par la relation : La formule permet de dire que : Définition



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Considérons une suite numérique (u n) où la différence entre un terme et son précédent reste constante et égale à 5 Si le premier terme est égal à 3, les premiers termes successifs sont : u 0 = 3, u 1 = 8, u 2 = 13, u 3 = 18 Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3 La suite est donc



SUITES NUMERIQUES I) Définition dune suite

I) Définition d'une suite 1) Définition Définition : Une suite est une « succession » de nombres réels Ces nombres réels sont les termes de la suite Une suite (u n) associe, à tout entier n, un nombre réel noté u n et appelé le terme gén éral de la suite La notation u n est la notation indicielle, n est appelé l’indice ou le



SUITES ARITHMETIQUES ET GEOMETRIQUES

1) Les nombres – 5, 8, 21 sont les trois termes consécutifs d’une suite Est-ce une suite arithmétique ou géométrique ? Quelle est la raison de cette suite ? 2) Les nombres –5, 10, –20 sont les trois termes consécutifs d’une suite Est-ce une suite arithmétique ou géométrique ? Quelle est la raison de cette suite ? Exercice n°11



Les suites numériques - Logamathsfr

Pour calculer les termes d'une suite avec un tableur : Suites définies explicitement Suites récurrentes A B 1 0 = u(A1) 2 =A1+1 = u(A2) Sélectionner A2B2, puis tirer vers le bas, jusqu'à la valeur de n cherchée dans la colonne A Les termes de la suite sont dans la colonne B A B 1 0 v0 (donné) 2 =A1+1 = v(B1)



III - Quelques suites célèbres

dispose alors, d’une représentation graphique de la suite un On peut lire les termes u0, u1, u2, sur l’axe des abscisses et sur l’axe des ordonnées Dans la plupart des cas, par manque de place ou de lisibilité, on ne peut représenter que les premiers termes de la suite



Savoir REPRÉSENTER GRAPHIQUEMENT LES TERMES DUNE SUITE

Savoir REPRÉSENTER GRAPHIQUEMENT LES TERMES D'UNE SUITE Rappels: Une fois de plus, ne pas confondre : u - fles suites définies explicitement par une formule explicite n = (n), - les suites définies par une relation de récurrence u n+1 = f(u n) et la donnée du premier terme



Suites arithmétiques et suites géométriques

On appelle suite géométrique une suite de nombres où on passe d’un terme au suivant en multipliant toujours par le même nombre (ce nombre est appelé raison de la suite géométrique et est souvent noté q) 2°) Exemple : Suite géométrique de premier terme 2 et de raison 3 : 2 6 18 54 etc Attention, il y a (34 – 12 + 1) soit 23 termes



Placer les premiers termes d’une suite sur l’axe des abscisses

Placer les premiers termes d’une suite sur l’axe des abscisses Le point A est le point de la droite d’ordonnée u 1 Puisque la droite a pour équation y = x, l’abscisse de A est aussi u 1 4) Expliquer comment on peut placer u 2 sur l’axe des abscisses Pour placer u

[PDF] les termes propositions ,

[PDF] Les terpenoïdes

[PDF] les territoires dans la mondialisation composition

[PDF] les territoires dans la mondialisation shanghai

[PDF] les territoires dans la mondialisation terminale s

[PDF] les territoires de la mondialisation cours

[PDF] les territoires européens 1ère stmg cours

[PDF] les territoires européens 1ère stmg fiche

[PDF] Les territoires productifs français

[PDF] Les territoires productifs français

[PDF] les territoires ultramarins

[PDF] Les territoires ultramarins de la France [DEVOIR BONUS]

[PDF] les territoires ultramarins entre union européenne et aire régionale

[PDF] les territoires ultramarins français

[PDF] les test alternatif

1

SUITES ARITHMETIQUES

ET SUITES GEOMETRIQUES

I. Suites arithmétiques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u 0 = 3, u 1 = 8, u 2 = 13, u 3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.

La suite est donc définie par : .

Définition : Une suite (u

n ) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : .

Le nombre r est appelé raison de la suite.

Méthode : Démontrer si une suite est arithmétique

Vidéo https://youtu.be/YCokWYcBBOk

1) La suite (u

n ) définie par : est-elle arithmétique ?

2) La suite (v

n ) définie par : est-elle arithmétique ? 1) . La différence entre un terme et son précédent reste constante et égale à -9. (u n ) est une suite arithmétique de raison -9. 2) . La différence entre un terme et son précédent ne reste pas constante. (v n ) n'est pas une suite arithmétique.

Vidéo https://youtu.be/6O0KhPMHvBA

0 1 3 5 nn u uu 1nn uur u n =7-9n v n =n 2 +3 1

7917 979 9799

nn uunn nn 2 222
1

1332 13 321

nn vvnnnnn n 2

Propriété : (u

n ) est une suite arithmétique de raison r et de premier terme u 0

Pour tout entier naturel n, on a : .

Démonstration :

La suite arithmétique (u

n ) de raison r et de premier terme u 0 vérifie la relation

En calculant les premiers termes :

Méthode : Déterminer la raison et le premier terme d'une suite arithmétique

Vidéo https://youtu.be/iEuoMgBblz4

Considérons la suite arithmétique (u

n ) tel que et .

1) Déterminer la raison et le premier terme de la suite (u

n

2) Exprimer u

n en fonction de n.

1) Les termes de la suite sont de la forme

Ainsi et

On soustrayant membre à membre, on obtient : donc .

Comme , on a : et donc : .

2) soit ou encore

2) Variations

Propriété : (u

n ) est une suite arithmétique de raison r. - Si r > 0 alors la suite (u n ) est croissante. - Si r < 0 alors la suite (u n ) est décroissante.

Démonstration : .

- Si r > 0 alors et la suite (u n ) est croissante. - Si r < 0 alors et la suite (u n ) est décroissante.

Exemple :

Vidéo https://youtu.be/R3sHNwOb02M

u n =u 0 +nr u n+1 =u n +r u 1 =u 0 +r 2100

2uururrur=+=++= +

3200

23uururrur=+=++= +

100
(1) nn uur unr ru nr u 5 =7 u 9 =19 u n =u 0 +nr 50

57uur=+=

90

919uur=+=

5r-9r=7-19

r=3 u 0 +5r=7 u 0 +5´3=7 u 0 =-8 0n uunr =+83 n un=-+´38 n un=- u n+1 -u n =u n +r-u n =r u n+1 -u n >0 u n+1 -u n <0 3

La suite arithmétique (u

n ) définie par est décroissante car de raison négative et égale à -4.

3) Représentation graphique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

Exemple :

On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4.

RÉSUMÉ

(u n ) une suite arithmétique - de raison r - de premier terme u 0

Exemple :

et

Définition

La différence entre un terme et son

précédent est égale à -0,5.

Propriété

Variations

Si r > 0 : (u

n ) est croissante.

Si r < 0 : (u

n ) est décroissante.

La suite (u

n ) est décroissante.

Représentation

graphique

Remarque :

Les points de la représentation

graphique sont alignés. u n =5-4n

0,5r=-

0 4u= 1nn uur 1 0,5 nn uu 0n uunr =+40,5 n un=-

0,50r=-<

4

II. Suites géométriques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où le rapport entre un terme et son précédent reste constant et égale à 2. Si le premier terme est égal à 5, les premiers termes successifs sont : u 0 = 5, u 1 = 10, u 2 = 20, u 3 = 40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5.

La est donc définie par : .

Vidéo https://youtu.be/WTmdtbQpa0c

Définition : Une suite (u

n ) est une suite géométrique s'il existe un nombre q tel que pour tout entier n, on a : .

Le nombre q est appelé raison de la suite.

Méthode : Démontrer si une suite est géométrique

Vidéo https://youtu.be/YPbEHxuMaeQ

La suite (u

n ) définie par : est-elle géométrique ? Le rapport entre un terme et son précédent reste constant et égal à 5. (u n ) est une suite géométrique de raison 5 et de premier terme .

Exemple concret :

On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%.

Chaque année, le capital est multiplié par 1,04. Ce capital suit une progression géométrique de raison 1,04.

On a ainsi :

De manière générale : avec

On peut également exprimer u

n en fonction de n :

Propriété : (u

n ) est une suite géométrique de raison q et de premier terme u 0

Pour tout entier naturel n, on a : .

0 1 5 2 nn u uu 1nn uqu =´35 n n u=´ 11 1 1 355
55
355
nn nn n nn n u u u 0 =3×5 0 =3 1

1,04500520u=´=

2

1,04520540,80u=´=

3

1,04540,80562,432 u=´=

1 1,04 nn uu 0

500u=5001, 04

n n u=´ u n =u 0 ´q n 5

Démonstration :

La suite géométrique (u

n ) de raison q et de premier terme u 0 vérifie la relation

En calculant les premiers termes :

Méthode : Déterminer la raison et le premier terme d'une suite géométrique

Vidéo https://youtu.be/wUfleWpRr10

Considérons la suite géométrique (u

n ) tel que et . Déterminer la raison et le premier terme de la suite (u n

Les termes de la suite sont de la forme .

Ainsi et

Ainsi : et donc .

On utilise la fonction racine troisième de la calculatrice pour trouver le nombre qui

élevé au cube donne 64.

Ainsi

Comme , on a : et donc : .

2) Variations

Propriété : (u

n ) est une suite géométrique de raison q et de premier terme non nul u 0

Pour :

- Si q > 1 alors la suite (u n ) est croissante. - Si 0 < q < 1 alors la suite (u n ) est décroissante.

Pour :

- Si q > 1 alors la suite (u n ) est décroissante. - Si 0 < q < 1 alors la suite (u n ) est croissante.

Démonstration dans le cas où u

0 > 0 : - Si q > 1 alors et la suite (u n ) est croissante. - Si 0 < q < 1 alors et la suite (u n ) est décroissante. u n+1 =q´u n u 1 =q´u 0 2 2100
uquqququ=´=´´=´ 23
3200
uquqququ=´=´´=´ 1 100
nn nn uquqquq u u 4 =8 u 7 =512 u n =q n ´u 0 u 4 =q 4 ´u 0 =8 u 7 =q 7 ´u 0 =512 u 7 u 4 q 7 ´u 0 q 4 ´u 0 =q 3 u 7 u 4 512
8 =64 q 3 =64 q=64 3 =4 q 4 ´u 0 =8 4 4 ´u 0 =8quotesdbs_dbs46.pdfusesText_46