[PDF] Chapitre 2 1 24 Produits matriciels



Previous PDF Next PDF







Chapitre 13 : Matrices

Le produit de deux matrices diagonales est une matrice diagonale Le produit de deux matrices triangulaires supérieures est une matrice triangulaire supérieure Démonstration Pour les matrices carrées, cela découle directement de la dé nition Pour les matrices diagonales, prenons deux matrices diagonales (de taille n) A et B Le terme d



Chapitre 2 1 24 Produits matriciels

1 1 Produit de matrices carr´ees On a l’habitude de faire des produits de nombre; Par exemple 2×3 = 6 et on est habitu´e aux propri´et´s suivantes • il n’y a pas de diviseur de O: si un produit de deux nombres est nul c’est que l’un de ces deux nombres est nul • le produit de deux nombres est commutatif: 2×3 = 3×2



Définition et opérations sur les matrices

3 3 4 4 E §· ¨¸ ©¹ e) Produit de deux matrices Soient p,, trois entiers naturels non nuls Soient une matrice Aa ij, de format mn, et Bb , ij, une matrice de format np On définit la matrice Cc ij, , de format mp,, produit de la matrice Aa ij, par la matrice Bb ,B ij, que l’on note par : , 1 n j k b ¦ ATTENTION : On ne peut donc



Exo7 - Cours de mathématiques

MATRICES 2 MULTIPLICATION DE MATRICES 5 Exemple 8 A= 0 1 0 3 B = 4 1 5 4 C = 2 5 5 4 et AB = AC = 5 4 15 12 2 4 Propriétés du produit de matrices Malgré les difficultés soulevées au-dessus, le produit vérifie les propriétés suivantes :



Chapitre 3 Calcul matriciel - Free

Produit de deux matrices Règle de calcul Si A a ij le produit de la i-ème ligne de A par la j-ème colonne de B Exemple Si A=[2 4 1 3 2 2] et B=[0 1 4



Exercice 1 - unicefr

2) D eterminer l’inverse de Msous forme de produit de matrices el ementaires Ecrire Mcomme produit de matrices el ementaires 3) R esoudre a l’aide de l’inverse de Mle syst eme suivant ou mest un r eel x e : (m) 2 6 4 x 1 x 3 = m 2x 1 + 3x 2 + 4x 3 = 1 + x 2 + x 3 = 2m: 3



Cours 0D : matrices

est appelée produit de A et B et notée A£B, ou AB On doit également se souvenir de l’égalité suivante qui donne l’expression d’un produit de deux matrices élémentaires Rappelons que Ei,j est la matrice de Mn,p(K) dont tous les coefficients sont nuls sauf le coefficient d’indice (i, j) qui vaut 1 Sous couvert que le produit



Chapitre 13 : Matrices - résumé de cours

• Le produit AB n’est pas toujours défini : il existe à condition que le nombre de colonnes de A soit égal au nombre de lignes de B Même si BA est aussi défini, on n’a pas AB = BA • Ce n'est pas une loi interne excepté dans le cas particulier des matrices carrées



Matrices - Site de Tatiana Audeval, professeure agrégée de

10 3 PRODUIT MATRICIEL On insiste sur le fait qu'on multiplie une matrice de M n;ppar une matrice de M p; 1pour obtenir une matrice de M n; Remarque 10 6 Exercice 10 8 Calculer ABet CD

[PDF] calculatrice matrice en ligne

[PDF] produit de deux matrices de taille différentes

[PDF] nombre relatif multiplication et division

[PDF] multiplication de nombres relatifs 4ème exercices

[PDF] variable aléatoire pdf

[PDF] variable aléatoire discrète

[PDF] fonction de répartition d'une variable aléatoire discrète

[PDF] variable aléatoire exemple

[PDF] soliman et françois 1er

[PDF] fonction de distribution statistique

[PDF] produit scalaire deux vecteurs

[PDF] produit vectoriel de deux vecteurs dans le plan

[PDF] fonction de répartition d une variable aléatoire discrète

[PDF] multiplication coordonnées vecteurs

[PDF] variance

Chapitre 2 1 24 Produits matriciels

Chapitre 2

1 2.4. Produits matriciels

1.1 Produit de matrices carr´ees

On a l"habitude de faire desproduits de nombre;

Par exemple

2×3 = 6

et on est habitu´e aux propri´et´s suivantes•il n"y a pas de diviseur deO: si un produit de deux nombres est nul

c"est que l"un de ces deux nombres est nul•le produit de deux nombres est commutatif:

2×3 = 3×2

et plus generalement pour tous nombresbeta a×b=b×a On va g´en´eraliser le produit de nombre auproduit des tableaux de nombres, c"est `a-dire au produit dematrices. Si

B=?b1b2

b 3b4? ,A=?a1a2 a 3a4? sont deux matrices carr´ees de taille 2 (avec deux lignes et deux colonnes) on d´efinit b

3×a1+b4×a3b3×a2+b4×a4?

B×Aest aussi une matrice de taille 2.

Par exemple, si

B=?6 7

8 9? ,A=?1 2 3 5? alors

B×A=?6×1 + 7×3 6×2 + 7×5

8×1 + 9×3 8×2 + 9×5?

=?27 47

35 61?1

Pour les d´ebutants on dispose le calcul ainsi

1 2 3 5

6 7 27 47

8 9 35 61

Cette d´efinition peut ˆetre ´etendue `a n"importe quel matricen×no`un est un entier naturel (1,2,...,819...): `a la position d"indicei,jdeB×A on place le produit de lai-`eme ligne deBpar laj-`eme colonne deA. Le produit des matrices a des propri´et´es ´etranges par rapport au produit de nombres•il y a des diviseurs deO: si un produit de deux matrices est nul (toutes les composantes sont nulles) il peut arriver qu"aucune des deux matrices ne soit nulle.

Par exemple SiB=?1-2

-2 4? etA=?2 4 1 2? ,2 4 1 2

1-2 0 0

-2 4 0 0 autrement dit

B×A=?1×2 +-2×1 1×4 +-2×2

-2×2 + 4×1-2×4 + 4×2? =?0 0

0 0?•le produit de deux matrices n"est pas toujours commutatif:

A×B?=B×A

. Par exemple si comme tout `a l"heureA=?2 4 1 2? etB=?1-2 -2 4?1-2 -2 4

2 4-6 12

1 2-3 62

autrement dit

A×B=?2×1 + 4× -2 2× -2 + 4×4

1×1 + 2× -2 1× -2 + 2×4?

=?-6 12 -3 6? ?=B×A=?0 0 0 0? Une premi`ere application du produit de matricesOn se donne un graphe oreint´e c"est `a dire des points num´erot´es avec des fl`eches entre eux. Par exempleFigure 1:Grapheet on construit la matrice d"adjacence du graphe

•on met un 1 `a la placei,js"il y a une fl`eche partant deiet allant `aj•on met un 0 `a la placei,js"il n"y a pas de fl`eche partant deiet allant

`aj

Dans notre exemple:A=?

????0 1 1 0 0

0 0 0 1 1

0 0 0 1 0

0 0 0 0 0

0 0 0 1 0?

????3

On peut faire le produitA2=A×A0 1 1 0 0

0 0 0 1 1

0 0 0 1 0

0 0 0 0 0

0 0 0 1 0

0 1 1 0 0 0 0 0 2 1

0 0 0 1 1 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

autrement ditA 2=? ????0 0 0 2 1

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0?

La matriceA2compte le nombre de chemins de longueur 2 entreietj!! De mˆeme la matriceA3=A×A2compte le nombre de chemins de longueur 3 entreietj!!0 0 0 2 1

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 0 0 0 0 0 1 0

0 0 0 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 04

Autrement dit

A 3=? ????0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0?

Il y a un seul chemin de longueur 3, entre 1et 4

1.2 Composition des applications

Mais c"est pour ´etudier la composition des applications lin´eaires que la mul- tiplication des matrices va ˆetre la plus utile. On commence par rappeler le concept de la composition de deux appli- cations. La composition dey= sin(x) =f(x) avec la fonctionz= cos(y) =

g(y) est la fonctionz= cos(sin(x)) = (g◦f)(x).Figure 2:composition de fonctionsOn peut composer de la mˆeme mani`ere les applications lin´eaires. Re-

tournons `a l"exemple du d´ebut de la section 2.1. La positionx=?x1 x 2? du bateau est donn´ee par une position cod´eey=?y1 y 2? . Le code est donn´e par l"application lin´eaire y=Ax, A=?1 2 3 5? .5 On avait oubli´e un d´etail : la position du bateau est transmise `a un central `a Paris, et est cod´ee `a nouveau par l"application z=By, B=?6 7 8 9? La position du bateau re¸cue `a Paris est donn´ee par la formule z=B(Ax),

comme ´etant la composition dey=Axavecz=By.Figure 3:composition d"applications lin´eairesEst-ce que l"application compos´ee est lin´eaire, et si oui quelle est sa

matrice ? Nous allons aborder cette question cruciale : (a) en utilisant la force brutale, (b) en faisant un peu de th´eorie. (a) On ´ecrit les formules composantes par composante, (1) ?z1= 6y1+ 7y2, z

2= 8y1+ 9y2,(2)?y1=x1+ 2x2,

y

2= 3x1+ 5x2,

puis on substitue dans (1) les formules donn´ees pour lesyidans (2), ce qui donne z

1= 6(x1+ 2x2) + 7(3x1+ 5x2) = (6·1 + 7·3)x1+ (6·2 + 7·5)x2

= 27x1+ 47x2, z

2= 8(x1+ 2x2) + 9(3x1+ 5x2) = (8·1 + 9·3)x1+ (8·2 + 9·5)x2

= 35x1+ 61x2,6 ce qui montre que la compos´ee est bien lin´eaire et a pour matrice

BA=?6·1 + 7·3 6·2 + 7·5

8·1 + 9·3 8·2 + 9·5?

=?27 47

35 61?

(b) On utilise la caract´erisation des applications lin´eaires (section 2.1) pour prouver que l"applicationT(x) =B(Ax) est lin´eaire. On a :

T(v+w) =B(A(v+w)) =B(Av+Aw)

=B(Av) +B(Aw) =T(v) +T(w)

T(kv) =B(A(kv)) =B(kAv)

=kB(Av) =kT(v). Maintegnt que l"on sait queTest lin´eaire, il nous suffit pour trouver sa matrice de calculerT(e1) etT(e2), de sorte que la matrice deTest la matrice?T(e1)T(e2)?.

On a :

T(e1) =B(Ae1) =B(de la premi`ere colonne de A)

=?6 7 8 9?? 1 3? =?27 35?

T(e2) =B(Ae2) =B(de la deuxi`eme colonne de A)

=?6 7 8 9?? 2 5? =?47quotesdbs_dbs2.pdfusesText_2