[PDF] Cours de Statistiques inférentielles



Previous PDF Next PDF







PRINCIPALES DISTRIBUTIONS DE PROBABILITÉS

plus élevées du côté gauche de la distribution que du côté droit (asymétrie positive) Si p est supérieur à 1/2, c’est l’inverse (asymétrie négative) c) La distribution tend à devenir symétrique lorsque n est grand De plus, si p n'est pas trop voisin de 0 ou 1, elle s'approchera de la distribution de la loi normale que l'on verra



Notes de cours - Statistique Descriptive

Définition 4 :On appelle fonction de répartition empirique ou observée, ou encore dia-gramme des fréquences cumulées d’un échantillon fx 1;:::;x ng(ou d’une distribution statistique f(a 1;n 1);(a 2;n 2);:::;(a p;n p)g)lafonctiondéfinie8x2R par: F(x) = Nombre d’observations x n; c’est-à-dire: F(x) = 8



Probabilit´es et statistique - Université de Montréal

Probabilit´es et statistique Notes de cours pour MAT 1978 5 Estimation des param`etres d’une distribution 51 3 Fonction de masse de la loi binomiale, n=20



Chapitre 2 : Variables aléatoires et distributions

La fonction de répartition obtenue en ne considérant qu’une des deux variables est appelée fonction de répartition marginale On peut l’obtenir directement de la fonction de répartition conjointe : F X ( x ) = F X,Y ( x, ∞) - Si X et Y sont des v a discrètes, on obtient la fonction de masse marginale de X par : = ∑ i p X ( x) p X



Analyse spatiale : distribution statistique et distirbution

Cours 2 : DISTRIBUTION STATISTIQUE ET DISTRIBUTION SPATIALE Claude GRASLAND – Professeur de Géographie - Université Paris 7 Objectifs 1- Méthodes statistiques élémentaires permettent de décrire la distribution d’un ensemble de lieux caractérisés par leurs position (x,y) 2- Modélisation des distributions spatiale en fonction d



Cours de Statistiques inférentielles

Nous allons chercher à faire l’inverse : l’inférence statistique consiste à induire les caractéristiques in- Figure 1 2–fonction˜2 inverse 1 2 3 Loi de



INTRODUCTION À LA PHYSIQUE STATISTIQUE Cours

• 1859 : J-C Maxwell (Ecosse) découvre la loi de distribution des vitesses d’un gaz • 1866 : Ludwig Boltzmann (Autriche) obtient sa thèse portant sur la théorie cinétique des gaz • 1872 : Boltzmann propose une interprétation statistique de l’irréversibilité et de l’atteinte de l’équilibre



Cours de Statistique asymptotique

Ce qui prouve le r esultat lorsque la fonction de r epartition de Xest continue Dans le cas g en eral, le nombre de points de discontinuit es de la fonction de r epartition est au plus d enombrable, quitte a elargir un peu le rectangle Ion peut supposer que la fronti ere de I ne poss ede pas de points de discontinuit es



Fiche 4 : Statistique descriptive avec R

de la série statistique rangée dans l’ordre croissant (à l’aide de la fonction sort) Les valeurs correspondantessont11:7 et12,donclavaleurduquantiled’ordre0:64 est:

[PDF] produit scalaire deux vecteurs

[PDF] produit vectoriel de deux vecteurs dans le plan

[PDF] fonction de répartition d une variable aléatoire discrète

[PDF] multiplication coordonnées vecteurs

[PDF] variance

[PDF] multiplication d'un vecteur par un réel exercices

[PDF] produit vectoriel de deux vecteurs de dimension 2

[PDF] carré d'un vecteur

[PDF] multiplication de deux vecteurs colonnes

[PDF] produit scalaire vecteur 3d

[PDF] le resultat d'une multiplication s'appelle

[PDF] division vocabulaire

[PDF] vocabulaire multiplication

[PDF] loi géométrique probabilité exercices

[PDF] la santé définition

Cours de Statistiques inférentielles

Licence 2-S4 SI-MASS

Année 2018Cours de Statistiques inférentielles

Pierre DUSART

2

Chapitre1Lois statistiques

1.1 Introduction

Nous allons voir que si une variable aléatoire suit une certaine loi, alors ses réalisations (sous forme

d"échantillons) sont encadrées avec des probabilités de réalisation. Par exemple, lorsque l"on a une énorme

urne avec une proportionpde boules blanches alors le nombre de boules blanches tirées sur un échan-

tillon de taillenest parfaitement défini. En pratique, la fréquence observée varie autour depavec des

probabilités fortes autour depet plus faibles lorsqu"on s"éloigne dep.

Nous allons chercher à faire l"inverse : l"inférence statistique consiste à induire les caractéristiques in-

connues d"une population à partir d"un échantillon issu de cette population. Les caractéristiques de

l"échantillon, une fois connues, reflètent avec une certaine marge d"erreur possible celles de la population.

1.1.1 Fonction de répartition

La densité de probabilitép(x)ou la fonction de répartitionF(x)définissent la loi de probabilité d"une

variable aléatoire continueX. Elles donnent lieu aux représentations graphiques suivantes :Figure1.1 - fonction répartition

La fonction de distribution cumuléeF(x)exprime la probabilité queXn"excède pas la valeurx:

F(x) =P(Xx):

De même, la probabilité que X soit entreaetb(b > a) vaut

P(a < X < b) =F(b)F(a):

4CHAPITRE 1. LOIS STATISTIQUES1.1.2 Grandeurs observées sur les échantillons

L"espéranceE(X)d"une variable aléatoire discrèteXest donnée par la formule

E(X) =X

ix iP(xi): L"espérance est également appelée moyenne et notée dans ce casX. Sa variance2Xest l"espérance des carrés des écarts avec la moyenne :

2X=E[(XX)2] =X

i(xiX)2P(xi) =X ix

2iP(xi)2X:

Son écart-typeXest la racine positive de la variance.

1.2 Lois usuelles

1.2.1 Loi normale ou loi de Gauss

Une variable aléatoire réelleXsuit une loi normale (ou loi gaussienne, loi de Laplace-Gauss) d"espérance

et d"écart type(nombre strictement positif, car il s"agit de la racine carrée de la variance2) si cette

variable aléatoire réelleXadmet pour densité de probabilité la fonctionp(x)définie, pour tout nombre

réelx, par : p(x) =1 p2e12 (x )2: Une telle variable aléatoire est alors dite variable gaussienne.

Une loi normale sera notée de la manière suivanteN(;)car elle dépend de deux paramètres(la

moyenne) et(l"écart-type). Ainsi si une variable aléatoireXsuitN(;)alors

E(X) =etV(X) =2:

Lorsque la moyennevaut 0, et l"écart-type vaut 1, la loi sera notéeN(0;1)et sera appelée loi normale

standard. Sa fonction caractéristique vautet2=2. Seule la loiN(0;1)est tabulée car les autres lois (c"est-

à-dire avec d"autres paramètres) se déduise de celle-ci à l"aide du théorème suivant : SiYsuitN(;)

alorsZ=Y suitN(0;1). On notela fonction de répartition de la loi normale centrée réduite : (x) =P(Z < x) avecZune variable aléatoire suivantN(0;1).

Propriétés et Exemples :(x) = 1(x),

(0) = 0:5;(1:645)0:95;(1:960)0:9750

Pourjxj<2, une approximation depeut être utilisée; il s"agit de son développement de Taylor à

l"ordre 5 au voisinage de 0 : (x)0:5 +1p2 xx36 +x540

Inversement, à partir d"une probabilité, on peut chercher la borne pour laquelle cette probabilité est

effective. Cours Proba-Stat / Pierre DUSART5Notation : on noteraz=2le nombre pour lequel

P(Z > z=2) ==2

lorsque la variable aléatoire suit la loi normale standard.risque0:010:020:050:10valeur critiquez=22:582:331:961:645coefficient de sécuritéc99%98%95%90%

A l"aide des propriétés de la loi normale standard, on remarque que le nombrez=2vérifie également

P(Z < z=2) =

P(Z

P(z=2< Z < z=2) =

P(jZj> z=2) =

La somme de deux variables gaussiennes indépendantes est elle-même une variable gaussienne (stabilité) :

SoientXetYdeux variables aléatoires indépendantes suivant respectivement les loisN(1;1)et N(2;2). Alors, la variable aléatoireX+Ysuit la loi normaleN(1+2;p

21+22).

1.2.2 Loi du2(khi-deux)

Définition 1SoitZ1;Z2;:::;Zune suite de variables aléatoires indépendantes de même loiN(0;1).

Alors la variable aléatoireP

i=1Z2isuit une loi appeléeloi du Khi-deuxàdegrés de liberté, notée 2(). Proposition 1.2.11. Sa fonction caractéristique est(12it)=2.

2. La densité de la loi du2()est

f (x) = 12 =2(=2)x=21ex=2pourx >0

0sinon.

oùest la fonction Gamma d"Euler définie par(r) =R1

0xr1exdx.

3. L"espérance de la loi du2()est égale au nombrede degrés de liberté et sa variance est2.

4. La somme de deux variables aléatoires indépendantes suivant respectivement2(1)et2(2)suit

aussi une loi du2avec1+2degrés de liberté. PreuveCalculons la fonction caractéristique deZ2lorsqueZsuitN(0;1). '(t) =E(eitZ2) =Z 1 1 eitz21p2ez2=2dz 1p2Z 1 1 e12 (12it)z2dz 1p2Z 1 1e 12 u2(12it)1=2dten posantu= (12it)1=2z '(t) = (12it)1=2 Maintenant pour la somme devariablesZ2iindépendantes, on a '(t) = (12it)=2:

6CHAPITRE 1. LOIS STATISTIQUESMontrons maintenant que la fonction de densité est correcte. Pour cela, calculons la fonction caractéris-

tique à partir de la densité : '(t) =E(eitx) =Z +1 0 eitx12 =2(=2)x=21ex=2dx 12 =2(=2)Z +1 0 x(1=2it)xdx 12 =2(=2)1(1=2it)(1=2it)=21Z +1 0 u=21euduen posantu= (1=2it)x 12 =2(=2)1(1=2it)=2Z +1 0 u=21eudu |{z} =(=2) '(t) =1(12it)=2

Calculons maintenant l"espérance et la variance. Selon la définition de la loi du2, chaque variable

Z isuit la loi normale centrée réduite. AinsiE(Z2i) =V ar(Zi) = 1etE(P i=1Z2i) =. De même, V(Zir) =E(Z4i)(E(Z2i))2=41:On sait que pour une loi normale centrée réduite4= 3donc

V ar(Z2i) = 2etV ar(P

i=1Z2i) = 2: La dernière proposition est évidente de par la définition de la loi du2.

Fonction inverse: on peut trouver une tabulation de la fonction réciproque de la fonction de répartition

de cette loi dans une table (en annexe) ou sur un logiciel tableur :

7!2;(FonctionKHIDEUX.inverse(;));

c"est-à-dire la valeur de2;telle queP(2()> 2;) =. Exemple : Pour= 0:990et= 5,2= 0:554 =20:99;5.Figure1.2 - fonction2inverse

1.2.3 Loi de Student

Définition 2SoientZetQdeux variables aléatoires indépendantes telles queZsuitN(0;1)etQsuit

2(). Alors la variable aléatoire

T=ZpQ=

suit une loi appeléeloi de Studentàdegrés de liberté, notéeSt().

Cours Proba-Stat / Pierre DUSART7Proposition 1.2.21. La densité de la loi de la loi de Student àdegrés de liberté est

f(x) =1p +12 )(=2)1(1 +x2=)+12

2. L"espérance n"est pas définie pour= 1et vaut 0 si2. Sa variance n"existe pas pour2et

vaut=(2)pour3.

3. La loi de Student converge en loi vers la loi normale centrée réduite.

Remarque : pour= 1, la loi de Student s"appelle loi de Cauchy, ou loi de Lorentz.

1.2.4 Loi de Fisher-Snedecor

Définition 3SoientQ1etQ2deux variables aléatoires indépendantes telles queQ1suit2(1)etQ2 suit2(2)alors la variable aléatoire

F=Q1=1Q

2=2 suit une loi de Fisher-Snedecor à(1;2)degrés de liberté, notéeF(1;2).

Proposition 1.2.3La densité de la loiF(1;2)est

f(x) =(1+22 )(1=2)(2=2) 1 2

1=2x1=21(1 +

1 2x) 1+22 six >0 (0sinon):

Son espérance n"existe que si23et vaut2

22. Sa variance n"existe que si25et vaut22

2(1+22)

1(22)2(24).

Proposition 1.2.41. SiFsuit une loi de FisherF(1;2)alors1F suit une loi de FisherF(2;1).

2. SiTsuit une loi de Student àdegrés de liberté alorsT2suit une loi de FisherF(1;).

1.2.5 Fonctions inverses et TableurLoiNotationVariableFct RépartitionV. critiqueFonction inverse

GaussN(0;1)Zloi.normale.standard(z)z

quotesdbs_dbs2.pdfusesText_2