[PDF] FONCTION LOGARITHME NEPERIEN



Previous PDF Next PDF







FONCTION LOGARITHME NEPERIEN

solution de l'équation ex=a On la note lna La fonction logarithme népérien, notée ln, est la fonction : ln: 0;] +∞ →[ℝ xlnx Remarques : - Les fonctions exp et ln sont des fonctions réciproques l'une de l'autre - Les courbes représentatives des fonctions exp et ln sont symétriques par rapport à la droite d'équation y=x



La fonction logarithme népérien - lyceedadultesfr

3 ÉTUDE DE LA FONCTION LOGARITHME NÉPÉRIEN • Pour la deuxième limite, on fait un changement de variable On pose X = 1 x Donc si x → 0+ alors X → +∞ On a alors : lim x→0+ lnx = lim X→+∞ ln 1 X = lim ∞ −lnX =−∞ 3 3 Tableau de variation et courbe On peut résumer les variations et les limites de la fonction ln, dans



Chapitre 1 Exponentielle et logarithme népérien

La définition La fonction logarithme népérien f x= x() ln sur ]0;+¥[ est définie comme la fonction donnant l’unique solution de l’équation e =xy pour x> 0 D’où e =x y= xy ssi ln On a aussi la dérivée de cette fonction : ( ) 1 lnx'= x Le graphique Connaître le graphique de la fonction logarithme népérien permet de



limites simples ln

On utilise la réciprocité de ln x et de ex et la limite connue de ex pour montrer la première La deuxième découle de la première Pour retenir cette démonstration Bien connaître la définition d’une fonction qui tend vers + ∞ Les pré requis La fonction ln x est strictement croissante Les fonctions ln x et ex sont réciproques



Fonction exponentielle Limites Exercices corrigés

Etudier les limites de la fonction , définie sur (par ) , en et en Etudions les limites de la fonction , définie sur par ( ) , en et en 1) Déterminons tout d’abord la limite de en D’une part, ( ) De plus, Donc, d’après le théorème sur la limite de la composée de deux fonctions,



LIMITES DES FONCTIONS (Partie 1)

On dit que la fonction admet pour limite # en +∞ si (’) est aussi proche de # que l’on veut pourvu que ’ soit suffisamment grand Exemple : La fonction définie par (’)=2+ +, a pour limite 2 lorsque x tend vers +∞ En effet, les valeurs de la fonction se resserrent autour de 2 dès que x est suffisamment grand La distance MN



Démonstration de la dérivabilité de ln x

La fonction ln x est continue sur ]0;+∞[La démonstration Soit a un réel strictement positif On cherche x a x a x a − − → ln ln lim On fait apparaître une limite avec des exponentielles Or x = eln x et a = eln a donc on peut poser y = ln x et b = ln a Puisque la fonction ln x est continue si x > 0 , alors x a x a lim ln = ln → Et la



MATHEMATIQUES Fonction logarithme népérien : entraînement

L’équation ln(x) +ln(x −3) = 2ln(2) admet qu’une seule solution : x = 4 Exercice 5 a La fonction f est une somme de fonctions définies et dérivables sur ]0; +∞[ donc f est définie et dérivable sur ]0; +∞[ Son premier terme est de la forme u × v avec u(x) = x2, de dérivée u′(x) = 2x et v(x) = ln(x), de dérivée v′(x



Chapitre 10 : Limites et continuité des fonctions

Dans les cases ±∞* il faut se référer aux trois cas vus pour l’inverse d’une fonction de limite nulle : selon le signe de g, soit il n’y a pas de limite soit la limite est infinie PPP PPP limf PP limg l′ ∈ R∗ 0 ±∞ l ∈ R∗ l l′ ±∞* 0 0 0 FI 0 ±∞ ±∞ ±∞* FI 2 Composition et limites

[PDF] LIMITE DE ln

[PDF] limite de ln pdf

[PDF] limite de n

[PDF] limite de propriété cloture

[PDF] limite de q^n

[PDF] limite de référence terminale s

[PDF] limite de suite

[PDF] limite de suite géométrique

[PDF] limite de suite limite aide svp urgent

[PDF] limite de suite terminale s

[PDF] limite de suite terminale s cours

[PDF] limite de suites et operations

[PDF] limite de tangente en + l'infini

[PDF] Limite en -oo de f(x)

[PDF] Limite et algorithme

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frFONCTION LOGARITHME NEPERIEN En 1614, un mathématicien écossais, John Napier (1550 ; 1617) ci-contre, plus connu sous le nom francisé de Neper publie " Mirifici logarithmorum canonis descriptio ». Dans cet ouvrage, qui est la fina lité d'un trava il de 20 ans , Neper présente un outil permetta nt de simplifier le s calculs opératoires : le logarithme. Neper construit le mot à partir des mots grecs " logos » (logique) et arithmos (nombre). Toutefois cet outil ne trouvera son essor qu'après la mort de Neper. Les mathématiciens anglais Henri Briggs (1561 ; 1630) et William Oughtred (1574 ; 1660) reprennent et prolongent les travaux de Neper. Les mathématiciens de l'époque établissent alors des tables de logarithmes de plus en plus précises. L'intérêt d'établir ces tables logarithmiques est de permettre de substituer une multiplication par une addi tion (paragra phe II). Ceci peut paraît re dérisoire aujourd'hui, ma is il faut comprendre qu'à cette é poque, les calculatrices n'existent évidemment pas, les nombres décimaux ne sont pas d'usage courant et les opérations posées telles que nous les utilisons ne sont pas encore connues. Et pourtant l'astronomie, la navigation ou le commerce demandent d'effectuer des opérations de plus en plus complexes. I. Définition La fonction exponentielle est continue et strictement croissante sur ℝ, à valeurs dans

0;+∞

. D'après le théorème des valeurs intermédiaires, pour tout réel a de

0;+∞

l'équation e x =a admet une unique solution dans ℝ.

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frDéfinition : On appelle logarithme népérien d'un réel strictement positif a, l'unique solution de l'équation

e x =a . On la note lna . La fonction logarithme népérien, notée ln, est la fonction : ][ ln:0;+∞→ x!lnx

Remarques : - Les fonctions exp et ln sont des fonctions réciproques l'une de l'autre. - Les courbes représentatives des fonctions exp et ln sont symétriques par rapport à la droite d'équation

y=x

. - Dans le domaine scientifique, on utilise la fonction logarithme décimale, notée log est définie par :

log(x)= lnx ln10

Conséquences : a)

y=lnxavecx>0⇔x=e y b) ln1=0 lne=1 ln 1 e =-1 c) Pour tout x, lne x =x d) Pour tout x strictement positif, e lnx =x

Démonstrations : a) Par définition b) - Car

e 0 =1 - Car e 1 =e - Car e -1 1 e c) Si on pose y=e x , alors x=lny=lne x d) Si on pose y=lnx , alors x=e y =e lnx

II. Propriété de la fonction logarithme népérien 1) Relation fonctionnelle Théorème : Pour tous réels x et y strictement positifs, on a : ()lnlnln xyxy ×=+

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frDémonstration :

e ln(x×y) =x×y=e lnx ×e lny =e lnx+lny

Donc ()lnlnln xyxy ×=+

Remarque : Cette formule permet de transformer un produit en somme. Ainsi, celui qui aurait à effectuer 36 x 62, appliquerait cette formule, soit : log(36 x 62) = log(36) + log(62) ≈ 1,5563 + 1,7924 (voir table ci-contre) L'addition étant beaucoup plus simple à effectuer que la multiplication, on trouve facilement : log(36 x 62) ≈ 3,3487 En cherchant dans la table, le logarithme égal à 3,3487, on trouve 2232, soit : 36 x 62 = 2232. 2) Conséquences Corollaires : Pour tous réels x et y strictement positifs, on a : a)

ln 1 x =-lnx b) ln x y =lnx-lny c) lnx= 1 2 lnx d) lnx n =nlnx avec n entier relatif Démonstrations : a) 11 lnlnln ln1 0xx xx b) 11 lnlnln lnlnln x xxxy yyy c) ()

2lnlnl nlnlnxxxxxx=+=×=

d) On démontre ce résultat par récurrence. L'initialisation est triviale. La démonstration de l'hérédité passe par la décomposition : ()

1 lnlnln lnln ln(1 )ln nnn xxxxxnxxnx

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frMéthode : Simplifier une expression Vidéo https://youtu.be/HGrK77-SCl4 ()()

ln35 ln3 5A=-++

B=3ln2+ln5-2ln3

C=lne 2 -ln 2 e ln35 ln3 5 ln35 35 ln95 ln4 A=-++

B=3ln2+ln5-2ln3

=ln2 3 +ln5-ln3 2 =ln 2 3 ×5 3 2 =ln 40
9 C=lne 2 -ln 2 e =2lne-ln2+lne =2-ln2+1 =3-ln2

III. Etude de la fonction logarithme népérien 1) Continuité et dérivabilité Propriété : La fonction logarithme népérien est continue sur

0;+∞

. - Admis - Propriété : La fonction logarithme népérien est dérivable sur

0;+∞

et (lnx)'= 1 x . Démonstration : La fonction ln est continue sur

0;+∞

, donc pour tout réel a > 0, on a : lim x→a lnx=lna . Donc par composée de limites, en posant X=lnx lim x→a lnx-lna x-a =lim

X→lna

X-lna e X -e lna =lim

X→lna

1 e X -e lna X-lna Comme la fonction exponentielle est dérivable sur ℝ, on a : lim

X→lna

1 e X -e lna X-lna 1 e lna 1 a et donc lim x→a lnx-lna x-a 1 a

. Exemple : Vidéo https://youtu.be/yiQ4Z5FdFQ8 Dériver la fonction suivante sur l'intervalle

0;+∞

2 ln x fx x 2 2 2 22
1

2lnln1

2lnln 2ln ln xxx x fx x xx x x xx

2) Variations Propriété : La fonction logarithme népérien est strictement croissante sur

0;+∞

. Démonstration : Pour tout réel x > 0, (lnx)'= 1 x >0 . Corollaires : Pour tous réels x et y strictement positifs, on a : a) lnx=lny⇔x=y b) lnxMéthode : Résoudre une équation ou une inéquation Vidéo https://youtu.be/lCT-8ijhZiE Vidéo https://youtu.be/GDt785E8TPE Vidéo https://youtu.be/_fpPphstjYw a) Résoudre dans ℝ l'équation suivante : ()()ln3ln 90 xx-+-=

b) Résoudre dans ℝ l'inéquation suivante : ln3-x -lnx+1 a) Ensemble de définition : x-3>0 x>3 etquotesdbs_dbs47.pdfusesText_47