[PDF] Exo7 - Exercices de mathématiques



Previous PDF Next PDF







Limits involving ln(

Limits involving ln(x) We can use the rules of logarithms given above to derive the following information about limits lim x1 lnx = 1; lim x0 lnx = 1 : I We saw the last day that ln2 > 1=2 I Using the rules of logarithms, we see that ln2m = mln2 > m=2, for any integer m I Because lnx is an increasing function, we can make ln x as big as we



FONCTION LOGARITHME NEPERIEN

1 Yvan Monka – Académie de Strasbourg – www maths-et-tiques FONCTION LOGARITHME NEPERIEN En 1614, un mathématicien écossais, John Napier (1550 ; 1617) ci- contre, plus connu sous le nom francisé de Neper publie « Mirifici



La fonction logarithme népérien

• Pour la deuxième limite, on fait un changement de variable On pose X = 1 x Donc si x → 0+ alors X → +∞ On a alors : lim x→0+ lnx = lim X→+∞ ln 1 X = lim ∞ −lnX =−∞ 3 3 Tableau de variation et courbe On peut résumer les variations et les limites de la fonction ln, dans un tableau de variation : x 1 x ln 0





RAPPELS EXP ET FONCTION LN - Plus De Bonnes Notes

Rappels Exp et fonction ln Page 6 Démonstration ROC On a : lim ë→0 Ø ã−1 ë =lim ë→0 Ø0+ ã− Ø0 ë; On reconnait ici le taux d’accroissement de la fonction A T L en 0



Fiche technique sur les limites - lyceedadultesfr

3 3 Quotient de fonctions Si f a pour limite l l , 0 0 l 1 1 Si g a pour limite l0, 0 0 0 1 l 1 alors f g a pour limite l l0 1* F ind 0 1* F ind *Appliquer la règle des signes 4 Polynômes et les fonctions rationnelles 4 1 Fonction polynôme Théorème 1 Un polynôme a même limite en +1et 1 que son monôme du plus haut degré Si P(x) = a



Chapitre 5 Limites de fonctions

2) Limite réelle en l’infini a) Définition Définition 3 1) Soit f une fonction définie sur un intervalle de la forme ]α,+∞[ ou [α,+∞[ On dit que f tend vers le réel ℓ quand x tend vers +∞ si et seulement si tout intervalle ouvert de centre ℓ contient f(x) pour x assez grand On écrit alors lim x→+∞ f(x) = ℓ



Exo7 - Exercices de mathématiques

dl au voisinage de h=0 Indication pourl’exercice3 N En x =0 c’est le quotient de deux dl En x =+¥, on pose h= 1 x et on calcule un dl en h=0 Indication pourl’exercice4 N Il s’agit bien sûr de calculer d’abord des dl afin d’obtenir la limite On trouve : 1 lim x0 ex 2 cosx x2 = 3 2 2 lim x0 ln(1+x) sinx x =0 3 lim x0 cosx p



Les limites et la fonction exponentielle Les techniques pour

Déterminer la limite en + ∞ de f(x) = 1 2 + + x ex Par calcul direct , on a une forme indéterminée , mais on va utiliser la croissance comparée ; pour cela il faut faire apparaître dans la forme exponentielle et au dénominateur de la fraction la même expression Puisqu’on ne peut pas toucher à l’exponentielle , on « joue » avec la

[PDF] limite de ln pdf

[PDF] limite de n

[PDF] limite de propriété cloture

[PDF] limite de q^n

[PDF] limite de référence terminale s

[PDF] limite de suite

[PDF] limite de suite géométrique

[PDF] limite de suite limite aide svp urgent

[PDF] limite de suite terminale s

[PDF] limite de suite terminale s cours

[PDF] limite de suites et operations

[PDF] limite de tangente en + l'infini

[PDF] Limite en -oo de f(x)

[PDF] Limite et algorithme

[PDF] Limite et asymptote

Exo7

Développements limités

Corrections d"Arnaud Bodin.

1 Calculs

Exercice 1Donner le développement limité en 0 des fonctions : 1. cos xexpxà l"ordre 3

2.(ln(1+x))2à l"ordre 4

3. shxxx

3à l"ordre 6

4. e xp sin(x)à l"ordre 4 5. sin

6(x)à l"ordre 9

6. ln cos(x)à l"ordre 6 7.

1cosxà l"ordre 4

8. tan xà l"ordre 5 (ou 7 pour les plus courageux)

9.(1+x)11+xà l"ordre 3

10. arcsin ln(1+x2)à l"ordre 6 1. Dév eloppementlimité en 1 à l"ordre 3 de f(x) =px. 2. Dév eloppementlimité en 1 à l"ordre 3 de g(x) =epx 3.

Dév eloppementlimité à l"ordre 3 en

p3 deh(x) =ln(sinx).

Donner un développement limité à l"ordre 2 def(x) =p1+x21+x+p1+x2en 0. En déduire un développement à

l"ordre 2 en+¥. Calculer un développement à l"ordre 1 en¥.

2 Applications

Exercice 4Calculer les limites suivantes

lim x!0e x2cosxx

2limx!0ln(1+x)sinxx

limx!0cosxp1x2x 4

Étudier la position du graphe de l"applicationx7!ln(1+x+x2)par rapport à sa tangente en 0 et 1.

Déterminer:

1. (a) lim x!+¥px

2+3x+2+x

(b) lim x!¥px

2+3x+2+x

2. lim x!0+(arctanx)1x 2 3. lim x!0(1+3x)13

1sinx1cosx

Exercice 7Soitfl"application deRdansRdéfinie parf(x) =x31+x6:Calculerf(n)(0)pour toutn2N:

Soitaun nombre réel etf:]a;+¥[!Rune application de classeC2. On supposefetf00bornées ; on pose

M 0=sup x>ajf(x)jetM2=sup x>ajf00(x)j. 1. En appliquant une formule de T aylorreliant f(x)etf(x+h), montrer que, pour toutx>aet touth>0, on a :jf0(x)j6h2 M2+2h M0. 2.

En déduire que f0est bornée sur]a;+¥[.

3.

Établir le résultat sui vant: soit g:]0;+¥[!Rune application de classeC2à dérivée seconde bornée et

telle que limx!+¥g(x) =0. Alors limx!+¥g0(x) =0.

4 DL implicite

Exercice 9tan(x) =x1.Montrer que l"équation tan x=xpossède une unique solutionxndansnpp2 ;np+p2 (n2N). 2.

Quelle relation lie xnet arctan(xn)?

3. Donner un DL de xnen fonction denà l"ordre 0 pourn!¥. 4.

En reportant dans la relation trouvée en

2 , obtenir un DL dexnà l"ordre 2.

Exercice 10Recherche d"équivalentsDonner des équivalents simples pour les fonctions suivantes :

1.

2 exp1+4xp1+6x2, en 0

2.(cosx)sinx(cosx)tanx, en 0

3. arctan x+arctan3x 2p3 , enp3 4. px

2+123px

3+x+4px

4+x2, en+¥

5. ar gch

1cosx, en 0

cosx1+ax21+bx2 soit uno(xn)en 0 avecnmaximal.

Calculer

`=limx!+¥ ln(x+1)lnx x

Donner un équivalent de

ln(x+1)lnx x lorsquex!+¥.

Indication pourl"exer cice1 N1.cos xexpx=1+x13

x3+o(x3)

2.(ln(1+x))2=x2x3+1112

x4+o(x4) 3. shxxx 3=13! +15! x2+17! x4+19! x6+o(x6) 4. e xp sin(x)=1+x+12 x218 x4+o(x4) 5. sin

6(x) =x6x8+o(x9)

6. ln (cosx) =12 x2112 x4145 x6+o(x6) 7.

1cosx=1+12

x2+524 x4+o(x4) 8. tan x=x+x33 +2x515 +17x7315 +o(x7)

9.(1+x)11+x=exp11+xln(1+x)=1+xx2+x32

+o(x3) 10. arcsin ln(1+x2)=x2x42 +x62

+o(x6)Indication pourl"exer cice2 NPour la première question vous pouvez appliquer la formule de Taylor ou bien poserh=x1 et considérer un

dl au voisinage deh=0.Indication pourl"exer cice3 NEnx=0 c"est le quotient de deux dl. Enx= +¥, on poseh=1x

et on calcule un dl enh=0.Indication pourl"exer cice4 NIl s"agit bien sûr de calculer d"abord des dl afin d"obtenir la limite. On trouve :

1. lim x!0ex2cosxx 2=32 2. lim x!0ln(1+x)sinxx =0 3. lim x!0cosxp1x2x 4=16

Indication pour

l"exer cice

5 NFaire un dl enx=0 à l"ordre 2 cela donnef(0),f0(0)et la position par rapport à la tangente donc tout ce qu"il

faut pour répondre aux questions. Idem enx=1.Indication pourl"exer cice6 NIl s"agit de faire un dl afin de trouver la limite.

1. (a) lim x!+¥px

2+3x+2+x= +¥

(b) lim x!¥px

2+3x+2+x=32

2. lim x!0+(arctanx)1x 2=0 4 3.lim x!0(1+3x)13

1sinx1cosx=2Indication pourl"exer cice7 NCalculer d"abord le dl puis utiliser une formule de Taylor.

Indication pour

l"exer cice

8 N1.La formule à appliquer est celle de T aylor-Lagrangeà l"ordre 2.

2.

Étudier la fonction f(h) =h2

M2+2h

M0et trouver infh>0f(h).

3.

Il f autchoisir un a>0 tel queg(x)soit assez petit sur]a;+¥[; puis appliquer les questions précédentes

àgsur cet intervalle.Indication pourl"exer cice11 NIdentifier les dl de cosxet1+ax21+bx2enx=0.Indication pourl"exer cice12 NFaites un développement faisant intervenir desxet des lnx. Trouvez`=1.5

Correction del"exer cice1 N1.cos xexpx(à l"ordre 3).

Le dl de cosxà l"ordre 3 est

cosx=112! x2+e1(x)x3:

Le dl de expxà l"ordre 3 est

expx=1+x+12! x2+13! x3+e2(x)x3: Par convention toutes nos fonctionsei(x)vérifieronsei(x)!0 lorsquex!0.

On multiplie ces deux expressions

cosxexpx= 112
x2+e1(x)x3

1+x+12!

x2+13! x3+e2(x)x3 =1

1+x+12!

x2+13! x3+e2(x)x3 on développe la ligne du dessus 12 x2

1+x+12!

x2+13! x3+e2(x)x3 +e1(x)x3

1+x+12!

x2+13! x3+e2(x)x3 On va développer chacun de ces produits, par exemple pour le deuxième produit : 12! x2

1+x+12!

x2+13! x3+e2(x)x3 =12 x212 x314 x4112 x512 x2e2(x)x3: Mais on cherche un dl à l"ordre 3 donc tout terme enx4,x5ou plus se met danse3(x)x3, y compris x

2e2(x)x3qui est un bien de la formee(x)x3. Donc

12 x2

1+x+12!

x2+13! x3+e2(x)x3 =12 x212 x3+e3(x)x3:

Pour le troisième produit on a

e

1(x)x3

1+x+12!

x2+13! x3+e2(x)x3 =e1(x)x3+xe1(x)x3+=e4(x)x3

On en arrive à :

cosxexpx= 112
x2+e1(x)x3

1+x+12!

x2+13! x3+e2(x)x3 =1+x+12! x2+13! x3+e1(x)x3 12 x212 x3+e3(x)x3 +e4(x)x3il ne reste plus qu"à regrouper les termes : =1+x+(12 12 )x2+(16 12 )x3+e5(x)x3 =1+x13 x3+e5(x)x3

Ainsi le dl de cosxexpxen 0 à l"ordre 3 est :

cosxexpx=1+x13 x3+e5(x)x3: 6

2.(ln(1+x))2(à l"ordre 4).

Il s"agit juste de multiplier le dl de ln(1+x)par lui-même. En fait si l"on réfléchit un peu on s"aperçoit

qu"un dl à l"ordre 3 sera suffisant (car le terme constant est nul) : ln(1+x) =x12 x2+13 x3+e(x)x3 e

5(x)!0 lorsquex!0.

(ln(1+x))2=ln(1+x)ln(1+x) x12 x2+13 x3+e(x)x3 x12 x2+13 x3+e(x)x3 =x x12 x2+13 x3+e(x)x3 12 x2 x12 x2+13 x3+e(x)x3 13 x3 x12 x2+13 x3+e(x)x3 +e(x)x3 x12 x2+13 x3+e(x)x3 =x212 x3+13 x4+e(x)x4 12 x3+14 x4+e1(x)x4 13 x4+e2(x)x4 +e3(x)x4 =x2x3+1112 x4+e4(x)x4 3. shxxx

3(à l"ordre 6).

Pour le dl de

shxxx

3on commence par faire un dl du numérateur. Tout d"abord :

shx=x+13! x3+15! x5+17! x7+19! x9+e(x)x9 donc shxx=13! x3+15! x5+17! x7+19! x9+e(x)x9:

Il ne reste plus qu"à diviser parx3:

shxxx 3=13! x3+15! x5+17! x7+19! x9+e(x)x9x 3=13! +15! x2+17! x4+19! x6+e(x)x6

Remarquez que nous avons commencé par calculer un dl du numérateur à l"ordre 9, pour obtenir après

division un dl à l"ordre 6. 4. e xp sin(x)(à l"ordre 4).

On sait sinx=x13!

x3+o(x4)et exp(u) =1+u+12! u2+13! u3+14! u4+o(u4). 7

On note désormais toute fonctione(x)xn(oùe(x)!0 lorsquex!0) paro(xn). Cela évite les multiples

expressionsei(x)xn. On substitueu=sin(x), il faut donc calculeru;u2;u3etu4: u=sinx=x13! x3+o(x4) u

2=x13!

x3+o(x4)2=x213 x4+o(x4) u

3=x13!

x3+o(x4)3=x3+o(x4) u

3=x4+o(x4)eto(u4) =o(x4)

Pour obtenir :

exp(sin(x)) =1+x13! x3+o(x4) 12! x213 x4+o(x4) 13! x3+o(x4) 14! x4+o(x4) +o(x4) =1+x+12 x218 x4+o(x4): 5. sin

6(x)(à l"ordre 9).

On sait sin(x) =x13!

x3+o(x4).

Si l"on voulait calculer un dl de sin

2(x)à l"ordre 5 on écrirait :

sin

2(x) =x13!

x3+o(x4)2=x13! x3+o(x4)x13! x3+o(x4)=x2213! x4+o(x5):

En effet tous les autres termes sont danso(x5).

Le principe est le même pour sin

6(x): sin

6(x) =x13!

x3+o(x4)6=x13! x3+o(x4)x13! x3+o(x4)x13! x3+o(x4)

Lorsque l"on développe ce produit en commençant par les termes de plus petits degrés on obtient

sin

6(x) =x6+6x5(13!

x3)+o(x9) =x6x8+o(x9) 6. ln cos(x)(à l"ordre 6).

Le dl de cosxà l"ordre 6 est

cosx=112! x2+14! x416! x6+o(x6):

Le dl de ln(1+u)à l"ordre 6 est ln(1+u) =u12

u2+13 u314 u4+15 u516 u6+o(u6).

On poseu=12!

x2+14! x416! x6+o(x6)de sorte quequotesdbs_dbs47.pdfusesText_47