[PDF] Fiche technique sur les limites



Previous PDF Next PDF







FONCTION LOGARITHME NEPERIEN

1 Yvan Monka – Académie de Strasbourg – www maths-et-tiques FONCTION LOGARITHME NEPERIEN En 1614, un mathématicien écossais, John Napier (1550 ; 1617) ci- contre, plus connu sous le nom francisé de Neper publie « Mirifici



Limits involving ln(

Limits involving ln(x) We can use the rules of logarithms given above to derive the following information about limits lim x1 lnx = 1; lim x0 lnx = 1 : I We saw the last day that ln2 > 1=2 I Using the rules of logarithms, we see that ln2m = mln2 > m=2, for any integer m I Because lnx is an increasing function, we can make ln x as big as we



Fiche technique sur les limites

3 3 Quotient de fonctions Si f a pour limite l l , 0 0 l 1 1 Si g a pour limite l0, 0 0 0 1 l 1 alors f g a pour limite l l0 1* F ind 0 1* F ind *Appliquer la règle des signes 4 Polynômes et les fonctions rationnelles 4 1 Fonction polynôme Théorème 1 Un polynôme a même limite en +1et 1 que son monôme du plus haut degré Si P(x) = a





La fonction logarithme népérien

• Pour la deuxième limite, on fait un changement de variable On pose X = 1 x Donc si x → 0+ alors X → +∞ On a alors : lim x→0+ lnx = lim X→+∞ ln 1 X = lim ∞ −lnX =−∞ 3 3 Tableau de variation et courbe On peut résumer les variations et les limites de la fonction ln, dans un tableau de variation : x 1 x ln 0



RAPPELS EXP ET FONCTION LN - Plus De Bonnes Notes

Rappels Exp et fonction ln Page 6 Démonstration ROC On a : lim ë→0 Ø ã−1 ë =lim ë→0 Ø0+ ã− Ø0 ë; On reconnait ici le taux d’accroissement de la fonction A T L en 0



Formule de Taylor, d´eveloppements limit´es, applications

3 Quelle est la limite lorsque x tend vers l’infini de y = exp(1/x) −cos(1/x) 1− p 1−1/x2 4 D´eterminer la limite pour x → ∞ de y = ln(x +1) ln(x) xlnx 5 Calculer le d´eveloppement limit´e a l’ordre 6 de y = tanx 6 Calculer le d´eveloppement limit´e a l’ordre 6 de y = tanhx 7 Calculer la limite de y = lncosax



Chapitre 10 : Limites et continuité des fonctions

Mathématiques ECO1 LMA 2019-2020 Exemple 2 lim x→1 1 √ x −1 = +∞, préciser l’asymptote 3 Limite à gauche Limite à droite Définition Soit I un intervalle, x 0 un élément de I qui n’est pas une extrémité de I et f une fonction



Chapitre 11 Formules de Taylor et développements limités

Par conséquent ln(1+ x) x 0 2 Inégalité de aTylor-Lagrange Rappel : Théorème 2 : Si a

[PDF] limite de n

[PDF] limite de propriété cloture

[PDF] limite de q^n

[PDF] limite de référence terminale s

[PDF] limite de suite

[PDF] limite de suite géométrique

[PDF] limite de suite limite aide svp urgent

[PDF] limite de suite terminale s

[PDF] limite de suite terminale s cours

[PDF] limite de suites et operations

[PDF] limite de tangente en + l'infini

[PDF] Limite en -oo de f(x)

[PDF] Limite et algorithme

[PDF] Limite et asymptote

[PDF] limite et continuité 1ere s pdf

Fiche technique sur les limites

1Fonctionsélémentaires

Les résultats suivants font référence dans de très nombreuses situations.

1.1Limiteen+1et1

f(x)x n1 x npx1pxln(x)e xlim x!+1f(x)+10+10+1+1lim x!1f(x)npair+1 nimpair10non défininon défininon défini0

1.2Limiteen0

f(x)1 x n1pxln(x)lim x!0x>0f(x)+1+11 lim x!0x<0f(x)npair+1 nimpair1non défininon défini2Asymptotesparallèlesauxaxes Résultat surfInterprétation géométrique sur la courbeCflim x!1f(x)=lLa droitey=lest asymptote horizontale àCflim

x!af(x)=1La droitex=aest asymptote verticale àCf3Opérationsurleslimitesetformesindéterminées

3.1Sommedefonctions

Sifa pour limitelll+11+1Siga pour limitel

0+11+111

alorsf+ga pour limitel+l0+11+11F. Ind.

Paul Milan 1 sur

3

Terminale ES

3.2Produitdefonctions

3.2Produitdefonctions

Sifa pour limitell,001

Siga pour limitel

0111
alorsfga pour limitell01*F. ind.1**Appliquer la règle des signes

3.3Quotientdefonctions

Sifa pour limitell,00l11

Siga pour limitel

0,0001l1

alors fg a pour limitel l

01*F. ind.01*F. ind.

*Appliquer la règle des signes

4Polynômesetlesfonctionsrationnelles

4.1Fonctionpolynôme

Théorème 1Un polynôme a même limite en+1et1que son monôme du plus haut degré.

Si P(x)=anxn+an1xn1++a1x+a0x0alors

lim Théorème 2Une fonction rationnelle a même limite en+1et1que son monôme du plus degré de son numérateur sur celui de son dénominateur.

Si f(x)=anxn+an1xn1++a1x+a0x0b

mxm+bm1xm1++b1x+b0x0alors lim x!+1f(x)=limx!+1a nxnb mxmetlimx!1f(x)=limx!1a nxnb mxmPaul Milan 2 sur3 Terminale ES

4.3Asymptoteoblique

4.3Asymptoteoblique

Théorème 3Dans une fonction rationnelle lorsque le degré du polynôme du numé- rateur est égale à celui de son dénominateur plus un, alors la représentation de cette fonctionCfadmet une asymptote oblique(D)en+1et1.

Soit f(x)=P(x)Q(x)et dP=dQ+1

Soit la droite(D)d"équation y=ax+b alorslimx!1[(f(x)(ax+b)]=05Fonctionslogarithmeetexponentielle

5.1Fonctionlogarithme

Comparaison de la fonction logarithme avec la fonction puissance en+1et en0.

En+1limx!+1ln(x)x

=0;limx!+1ln(x)x n=0

En0 limx!0x>0xln(x)=0;limx!0x>0x

nln(x)=0

5.2Fonctionexponentielle

Comparaison de la fonction exponentielle avec la fonction puissance en+1et en1.

En+1limx!+1e

xx = +1;limx!+1e xx n= +1 En 1limx!1xex=0;limx!1xnex=0Paul Milan 3 sur3 Terminale ESquotesdbs_dbs47.pdfusesText_47