[PDF] Suites arithmético-géométriques Limite et somme d’une suite



Previous PDF Next PDF







LIMITES DE SUITES

I Limite d'une suite géométrique 1) Suite (q n) q 0



Limite d’une suite géométrique - Parfenoff org

Limite d’une suite géométrique (????????) est une suite géométrique de raison non nulle Pour tout entier ????, ???????? = ????0 × ???? I) Théorème Q− -1 < < 1 > 1 ???? > +∞ Pas de limite Converge vers 0 ???? < −∞ II) Cas particuliers : Si = 0 alors ???????? = 0 pour ???? R1 Si = 1 alors ????????



Suites arithmético-géométriques Limite et somme d’une suite

Limite et somme d’une suite géométrique cours de TaleES I Suites arithmético-géométriques EXERCICE 6 1 : Etude d’une suite arithmético-géométrique Dans une réserve naturelle, une race de singes est en voie d’extinction à cause d’une maladie Au premier janvier 2014, une



Suites Limites de suites

Déterminer une limite en utilisant la définition 31 Étudier la limite d’une somme, d’un produit et d’un quo-tient 32 Déterminer une limite par minoration, majoration, enca-drement 33 Connaître et utiliser le théorème de convergence des suites monotones 34 Déterminer la limite éventuelle d’une suite géométrique 35



33 Suites arithmético-géométriques - univ-tlnfr

— Lorsque a = 0, q = 0 et q = 1, la suite (xn)n∈N obtenue est une suite géométrique de raison q Pour chacun de ces cas particuliers, on peut calculer la limite de la suite (xn)n∈N (quand elle existe) et la somme des n+1 premiers termes selon les règles suivantes : 3 5 Propriété – Cas des suites arithmétiques



Maths Limite de suites 9juin - medias2ftvakamaizednet

est une suite géométrique de premier terme de la suite à partir d’un certain rang Limite finie lim Opérations sur les limites: somme Si ( )a pour



Terminale S - Limite de suites - ChingAtome

une suite géométrique de premier terme 2 et de raison 2 5: 1 Déterminer les trois premiers termes de cette suite 2 a Déterminer l’expression de la somme des n premiers termes de cette suite en fonction de n b En déduire la valeur de la limite suivante: lim n7+1 u0 +u1 + +un Exercice réservé 2622 On considère la suite (un) n2N



Terminale ES - Suites géométriques

Exemple 2 : Soit la suite géométrique (???? ) de premier terme ????0=2 et de raison q = 5 Comme q >1 et ????0>0, la limite de la suite (???? ) est +∞ On écrit lim ???? =+∞ ce qui signifie que les termes de la suite deviennent de plus en plus grands lorsque ???? devient grand Exemple 3 : Soit la suite géométrique (????

[PDF] limite suite

[PDF] limite suite arithmético géométrique

[PDF] limite suite définie par récurrence

[PDF] limite suite géométrique

[PDF] limite variation

[PDF] limite, fonction exponentielle et démonstration

[PDF] Limiter l'alcoolisme chez les jeunes

[PDF] Limiter l'atteinte à la biodiversité planétaire

[PDF] limiter le droits de greve

[PDF] Limiter les pertes d'énergie dans une habitation

[PDF] limiter les risques de contamination et d'infection en svt

[PDF] limiter nos libertés pour assurer notre sécurité?

[PDF] limites

[PDF] Limites

[PDF] Limites & asymptote

Chapitre 6

Suites arithmético-géométriques

Limite et somme d"une suite géométriquecours de T aleES I.

Suites arithmético-géométriques EXERCICE6.1 :Etude d"une suite arithmético-géométriqueDans une réserve naturelle, une race de singes est en voie d"extinction à cause d"une maladie. Au premier janvier 2014, une

étude a montré que la population de cette race de singes, dans la réserve naturelle, ne comptait plus que5000individus.

On a alors mis en place un programme de soutient pour augmenter le nombre de naissances. A partir de cette date, on

estime que, chaque année, un quart des singes disparait et qu"il se produit 400 naissances.

On modélise la population de singes dans la reserve naturelle à l"aide d"une suite. Pour tout entier natureln, le termevn

de la suite représente le nombre de singes au premier janvier de l"année2014 +n.

1)Déterminerv0,v1etv2, justifier votre réponse.

2)Justifier que pour tout entier natureln, on a :vn+1= 0;75vn+ 400

3)On considère la suite(wn)définie pour toutnparwn=vn1600.

a)Montrer que(wn)est une suite géométrique de raison0;75. Préciser la valeur dew0. b)Pour tout entier natureln, exprimerwnen fonction den. c)En déduire que pour tout entier natureln, on avn= 1600 + 34000;75n.Définition 6.1 Une suite(un)n2Nest ditearithmético-géométriquelorsqu"il existe deux réelsaetbtels que

pour toutn2N,(un)n2Nvérifie la relation de récurrenceun+1=aun+b.Remarque 6.1 :Déterminer le terme général d"une suite arithmético-géométrique

íLa méthode pour étudier une suite arithmético-géométrique(un)définie par récurrence, est de déterminerc2Rtelle que

suite(un+c)soit géométrique. Connaissant le terme général de(un+c), on peut déduire celui de(un).

íEn classe de terminale ES, la résolution d"un problème portant sur une suite arithmético-géométrique est toujours guidée

par des questions, où la suite géométrique(un+c)est donnée.1 T aleES

CHAPITRE 6. SUITES ARITHMÉTICO-GÉOMÉTRIQUES / LIMITE ET SOMME D"UNE SUITE GÉOMÉTRIQUEM CERISIER - Mme ROUSSENALY

LGT Mansart - 2015-16II.Appr ochegraphique de la notion de limite d"une suite 1.

Limite finie d"une suite

S"intéresser à la limite d"une suite(un)n2N, c"est étudier le comportement des termesunquandndevient grand.Exemple 6.1 :

Soit(un)n2N?et(vn)n2N?les suites définies par : pour toutn2N?; un= 11n etvn= 12 nu n510152025300:20:40:60:811:20v n51015

0:60:40:200:20:4Graphiquement, on conjecture que :limn!+1un= 1etlimn!+1vn= 0Définition 6.2

Soitl2R.

On dit qu"une suite(un)n2Na pour limitelquandntend vers+1lorsqu"il existe un seuiln0à partir duquel les termesun

(pourn>n0) sont tous aussi proches que l"on veut del. On note alors :limn!+1un=lExemple 6.2 : Interprétation graphique

Sur le graphique ci-contre, on a représenté

les premiers termes d"une suite(un)qui converge vers un réell.

A partir du rangn0, tous les points repré-

sentant les termes de la suite, sont entre les deux droites en traits discontinus.xy n 0l 2.

Limite infinie d"une suite

Exemple 6.3 :

Soit(un)n2Net(vn)n2Nles suites définies par : pour toutn2N; un= 1;2netvn=n+ (1)nu n51015202520406080100 0M n 0v n510152025510152025 0M n

0Si on choisit un nombreMquelconque, les termesunetvnseront tous supérieurs àMà partir d"un certain rangn0à condition

de prendren0suffisamment grand. Graphiquement, on conjecture que :limn!+1un= +1etlimn!+1vn= +12 T aleES

CHAPITRE 6. SUITES ARITHMÉTICO-GÉOMÉTRIQUES / LIMITE ET SOMME D"UNE SUITE GÉOMÉTRIQUEM CERISIER - Mme ROUSSENALY

LGT Mansart - 2015-16Définition 6.3

On dit qu"une suite(un)n2Na pour limite+1quandntend vers+1, lorsque quel que soit le réelMque l"on choisi, il

existe un seuilnMà partir duquel les termesun(pourn>nM) sont tous plus grands queM. On note alors :limn!+1un= +1Exemple 6.4 : Interprétation graphique Sur le graphique ci-contre, on a représenté les premiers termes d"une suite(un) dont la limite est+1. A partir du rangn0, tous les points représentant les termes de la suite sont au- dessus de la droite horizontale en traits discontinus.xy n 0u n> Apourn>n0A 3.

Cas par ticulierd"une suite géométrique

Propriété 6.1 :Limite de la suite(qn)n2N(admise)Soitq2R+. íSiq >1alors la suite(qn)n2Nadmet+1pour limite.

íSi0< q <1alors la suite(qn)n2Nadmet0pour limite.EXERCICE6.2 :Donner la limite d"une suite de référenceDonner les limites des suites suivantes :(3n)n2N; et23

n n2N4.Utilisation d"un algorithme de rec herchede seuil pour une suite monotone

EXERCICE6.3 :Utilisation d"un algorithme de recherche de seuilVariables:u réel; M réel; n entier;

Debut saisir M; n:=0; u:=1.2^n; tant que u < Mn:=n+1; u:=1.2^n; fin tant que

Afficher n;

Fin

1)Executer cet algorithme en saisissant5pour la valeur deM, rassembler les étapes dans un tableau.

2)Recommencer en saisissant50pour la valeur deM. Cette fois, donner seulement la réponse finale de l"algorithme.

3)A quoi sert cet algorithme? Donner une réponse précise.

4)Après avoir saisi cet algorithme dans la calculatrice, déterminer le seuil pourM= 10000.3

T aleES

CHAPITRE 6. SUITES ARITHMÉTICO-GÉOMÉTRIQUES / LIMITE ET SOMME D"UNE SUITE GÉOMÉTRIQUEM CERISIER - Mme ROUSSENALY

LGT Mansart - 2015-16III.Somme des premier stermes d"une suite géométrique Propriété 6.2(démontrée ci-dessous)Soitq2Rn f1getn2N, on a :1 +q+q2+:::+qn=1qn+11q.Démonstration

Soitq2Rn f1getn2N,

on a :S=1 + q+q2+:::+qn1+qn donc :qS=q+q2+q3+:::+qn+qn+1 Donc par différence :SqS=1 qn+1, c"est à dire(1q)S= 1qn+1.

Or,q6= 1donc finalement :S=1qn+11qPropriété 6.3(partiellement démontrée ci-dessous)Soitq2Rn f1g. La somme de tous les premiers termes d"une suite géométrique de raisonqest donnée par la formule :

1

erterme1qNombre de termes1qDémonstrationCas d"une suite dont le premier terme estu0Soitq2Rn f1get(un)n2Nla suite géométrique de raisonqet de premier termeu0.

En utilisant l"expression du terme général on a :nX k=0u k=u0+u1+u2+:::+un1+un =u0+u0q+u0q2+:::+u0qn1+u0qn =u01 +q+q2+:::+qn1+qn

Ainsi,

nX k=0u k=u01qn+11q

EXERCICE6.4 :Calculer la somme des premiers termes d"une suite géométrique1)Calculer la somme des20premiers termes de la suite géométrique(un)n2Nde premier termeu0= 100

et de raisonq=12

2)Soit(vn)n>2la suite géométrique de raison2et de premier termev2=3.

Déterminer la somme des termesv2àv104

quotesdbs_dbs47.pdfusesText_47