[PDF] Annexe du chapitre 6: Fonctions trigonométriques



Previous PDF Next PDF







Fonctions Trigonométriques - Partie 3 Limites et intégration

Fonctions Trigonométriques - Partie 3 Limites et intégration I - Limites Rappel : les fonctions sinus et cosinus n’admettent pas de limite en +∞ et en –∞ Les théorèmes de comparaison et le théorème « des gendarmes » doivent être utilisés dans de nombreux cas On rappelle que pour tout x, −1⩽cosx⩽1 et −1⩽sinx⩽1



Limites et dérivées de fonctions trigonométriques

Limites et dérivées de fonctions trigonométriques Révision fonctions trigonométriques Question 1 Localiser les points correspondants aux angles suivants sur le cercle trigonométrique a) ˇ 6 b) 5ˇ 6 c) 4ˇ 3 d) ˇ 4 e) 3ˇ 4 f) 5ˇ 2 g) 7ˇ 4 h) 6ˇ 5 Question 2 Évaluer et simplifier les expressions suivantes a)sin ˇ 2 b)cos 7ˇ 6 c



Annexe du chapitre 6: Fonctions trigonométriques

FONCTIONS TRIGONOMETRIQUES I 2M renf – JtJ 2019 Annexe du chapitre 6: Fonctions trigonométriques A 1 Limites de fonctions trigonométriques Théorème des deux gendarmes Le théorème suivant implique 3 fonctions f, g et h dont l’une f est "prise en sandwich" entre les deux autres Si g et h ont la même limite lorsque x



Théorèmes sur les limites

Remarque: Le théorème des gendarmes est la base de toutes les limites de fonctions trigonométriques Nous allons l’utiliser pour la démonstration de la limite de base 0 sin lim 1 x x o x, et les autres limites trigonométriques en découleront suivant l’effet domino



I Les fonctions trigonométriques de TS

IV Limites Les fonctions sinus et cosinus n'ont pas de limite en l'infini Pour étudier les limites au voisinage de l'infini de fonctions trigonométriques, on utilise les théorèmes de comparaisons / théorème des gendarmes Exercices : Déterminer les limites suivantes : a) lim x→0 x



Limites d’une fonction

Limites des fonctions trigonométriques : sin lim 1 0 x x x tan lim 1 0 x x x 1 cos 1 lim 0 ² 2 x x x Limites des fonctions de type x u x : 0 lim ux x x 0 lim ux x x l 0 l Ces résultats restent valable, à droite en 0 x, à gauche en 0 x, en et en Si n est un nombre pair alors: Si n est un nombre impair alors: lim n x x



2 Fonctions, Dérivées, Limites et Intégrales

2 8 Limites et dérivées des fonctions trigonométriques Théorème 14 : D’après les fonctions dérivées des fonctions sinus et cosinus, ona: lim x→0 sinx x = 1 et lim x→0 cosx −1 x = 0 Pré-requis : Dérivées des fonctions sinus et cosinus Démonstration : On revient à la définition du nombre dérivée en 0 sin′ 0 = lim x



Limites et continuité de fonctions

2 Limites d'une fonction Limite en l'in ni, limite en un réel Limite à gauche, limite à droite Lien entre fonctions et suites Opérations sur les limites Branches in nies Ordre et limites 3 Continuité d'une fonction Continuité en un point Prolongement par continuité Opérations Continuité sur un intervalle 4 Fonctions trigonométriques



LIMITES – EXERCICES CORRIGES

2) En déduire les limites de f lorsque x tend vers +∞ et lorsque x tend vers −∞ Exercice n°13 Déterminer, à l'aide des théorèmes de comparaison, les limites en +∞ et en −∞ de chacune des fonctions f suivantes (si elles existent): 1) 1cos x fx x + = 2) 2 sin 1 x x fx x = +; Exercice n°14 On veut trouver la limite en +∞ de

[PDF] limites des fonctions trigonométriques pdf

[PDF] Limites des suites

[PDF] Limites en plus l'infini de fonction exponentielle

[PDF] limites et asymptotes cours

[PDF] limites et asymptotes cours pdf

[PDF] limites et asymptotes exercices corrigés

[PDF] limites et continuité

[PDF] limites et continuité cours bac

[PDF] limites et continuité cours bac pdf

[PDF] limites et continuité cours pdf

[PDF] limites et continuité cours terminale s pdf

[PDF] limites et continuité exercices corrigés

[PDF] limites et continuité exercices corrigés bac

[PDF] limites et continuité exercices corrigés bac maths

[PDF] limites et continuité exercices corrigés bac pdf

FONCTIONS TRIGONOMETRIQUES I

2M renf - JtJ 2019 Annexe du chapitre 6: Fonctions trigonométriques

A.1 Limites de fonctions trigonométriques

Théorème des deux gendarmes

Le théorème suivant implique 3 fonctions f, g et h dont l'une f est "prise en sandwich" entre les deux autres. Si g et h ont la même limite lorsque x tend vers a, alors f doit avoir cette même limite. Ainsi : • soit l'intervalle ]b ; c[ contenant a; • soit h(x) f (x) g(x) pour tout x ]b ; c[ \ {a}.

Si lim

xa g(x)=lim xa h(x)=L, alors lim xaf(x)=L

On acceptera ce théorème sans preuve

Exercice A6.1 :

Soit f une fonction telle que pour tout x on ait x 2 +x3 f(x)2x2

3x+1 .

a) Déterminer lim x2 f(x) b) Qu'en est-il si x 2 +x3f(x)2x2 3x+3 Remarque : Le théorème des deux gendarmes est un outil très souvent utilisé pour calculer des limites pour des fonctions trigonométriques. Observons ceci sur un exemple : Exemple : À l'aide du théorème des deux gendarmes, montrer que lim x0 xsin 1 x =0. xyy = f(x) y = g(x) y = h(x) a L

II ANNEXE CHAPITRE 6

2M renf - JtJ 2019

Exercice A6.2 :

Utiliser le théorème des deux gendarmes pour calculer lim x0 x 2 sin 1 x 2 Indications : -1 sin(angle) 1, puis constater que x 2 sin 1 x 2 est comprise entre deux paraboles.

Exercice A6.3 :

On considère le quart de cercle trigonométrique de centre O et de rayon 1. • En comparant les aires des triangles OIM et OIT avec celle du secteur circulaire OIM, montrer que : sin(x) x tan(x) si 0 < x < /2 • En déduire que : cos(x) sin(x) x 1 • Puis montrer que lim x0 sin(x) x • Comment adapter cette preuve pour le calcul de lim x0 sin(x) x

Exercice A6.3 bis :

Que devient le raisonnement précédent si l'angle x est en degré et alors que vaut lim x0° sin(x) x

Exercice A6.4 :

Sachant que lim

x0 sin(x) x =1, en déduire les limites suivantes : a) lim x0 sin(2x) x b) lim x0 sin(3x) sin(2x) c) lim x0 tan(x) x d) lim xa 2sin xa 2 xa

Exercice A6.5 :

Calculer, si elles existent, les limites suivantes : a) lim x0 cos(x) x b) lim x0 1cos 2 (x) xtan(x) c) lim x0

1cos(x)

sin(x) 2

Exercice A6.6 :

En amplifiant les fractions par 1 + cos(x), montrer que a) lim x0

1cos(x)

x=0 b) lim x0

1cos(x)

x 2 =1 2

Exercice A6.7 :

Utiliser le théorème des deux gendarmes pour calculer : a) lim x+ sin(x) x b) lim x+ e x sin(x) c) lim x+

2x+cos(x)

x+1

FONCTIONS TRIGONOMETRIQUES III

2M renf - JtJ 2019 A.2 Les preuves des règles de dérivation des fonctions trigonométriques Les règles de dérivation des fonctions trigo : 8

ème

règle : Si f(x)=sin(x) ....................... 9

ème

règle : Si f(x)=cos(x) ....................... 10

ème

règle : Si f(x)=tan(x) ....................... ou .......................

Exercice A6.8: Voici la preuve de la 8

ème

règle ci-dessus qu'il s'agit de compléter f (a)=lim xa f(x).......... ..................=lim xa Truc : on utilise la formule de soustraction d'angle (Formulaire page 31) f (a) = lim xa

2cos..........

sin.......... xa = lim xa cos..........

2sin..........

xa = lim xa cos.......... sin.......... = lim xa cos.......... lim xa sin.......... = cos2a 2

1=cos(a)

En changeant la variable de a en x, on obtient bien : f (x)=...............

Reprendre cette preuve en utilisant la définition équivalente de dérivée vue dans l'annexe du

chapitre 4: f(x)=lim x0 f(x+x)f(x) x Exercice A6.9: Démontrer les 2 dernières règles de dérivation.

IV ANNEXE CHAPITRE 6

2M renf - JtJ 2019 A.3 Les fonctions trigonométriques réciproques

Introduction

(à compléter) Nous avons vu dans le chapitre 1 que pour définir la fonction réciproque ...... d'une fonction f, il faut que celle-ci soit ..............., c'est-à-dire: • que si a b dans l'ensemble de ............ de f, alors f(a)......f(b). • tous les éléments de l'ensemble d'arrivée sont atteints.

On peut alors résumer ceci par :

y=f(x) x = .........

On a les propriétés suivantes :

(1) l'ensemble de définition de r f = ....................................... (2) l'ensemble image de r f = ....................................... (3) f r f(x) =...... pour tout x ...... (4) r ff(x)()=...... pour tout x ...... (5) les graphes de r f et f sont ............... l'un de l'autre par rapport à la droite d'équation ............ • La fonction arcsinus, notée arcsin (ou sin -1 ), est définie par : x arcsin(x)

De même, on peut définir :

• La fonction arccosinus, notée arccos (ou cos -1 ), est définie par : [ -1 ; 1 ] [...... : ......] x arccos(x)

FONCTIONS TRIGONOMETRIQUES V

2M renf - JtJ 2019

Introduction

(à compléter) • La fonction arctangente, notée arctan (ou tan -1 ), est définie par :

IR ]...... : ......[

x arctan(x)

Exemple : Déterminer :

sin sin 1 1 2 , cos 1 cos 5 4 et sin 1 sin 2 3 Exercice A6.10 : Déterminer sans calculatrice : a) cos cos 1 1 2 b) sin 1 sin 4 3 c) cos 1 cos 5 6 d) tan 1 tan 7 4

VI ANNEXE CHAPITRE 6

2M renf - JtJ 2019 A.4 Les dérivées des fonctions réciproques Exercice A6.11 : On considère la fonction f : IR IR définie par f(x)=x 2 +3 et le point P(1 ; f (1)). a) Déterminer r f. b) Tracer simultanément le graphe de f, celui de r f ainsi que le point P. c) Calculer la dérivée de f et celle de r f. d) Calculer f (1) et r f f(1) (), puis représenter ces valeurs sur le graphique. e) Que constatez-vous ? f) Cette constatation reste-t-elle vraie pour la fonction f définie par: f(x)=x+2 x4 pour x[2,5 ;2,5] et le point P(2 ; f (2)) Dont on propose ci-dessous une représentation graphique : g) En déduire r f (0) x -2-112 y -2 -1 1 2 f r f P

FONCTIONS TRIGONOMETRIQUES VII

2M renf - JtJ 2019 Théorème : Dérivée d'une fonction réciproque Si f est dérivable sur un intervalle I et si f ne s'annule pas sur I alors : • f possède une fonction inverse r f dérivable en tout point (f (x) ; x) où x I. r f (x)=1 f r f(x)

Justification :

VIII ANNEXE CHAPITRE 6

2M renf - JtJ 2019

Exemple : Soit la fonction f définie sur IR

par f(x)=x 2 Déterminer la dérivée de sa réciproque r f a) À l'aide de la formule ci-dessus. b) À l'aide du calcul " traditionnel », comparer. Exercice A6.12 : Effectuer la même démarche pour les fonctions f définies par : a) f(x)=x 3 4 et r f(x)=4x 3 b) f(x)=mx (m0) et r f(x)=.......... Les règles de dérivation des fonctions trigo inverses: 15

ème

règle : Si f(x)=sin 1 (x) f (x)=1 1x 2 16

ème

règle : Si f(x)=cos 1 (x) f (x)=1 1x 2 17

ème

règle : Si f(x)=tan 1 (x) f (x)=1 1+x 2

FONCTIONS TRIGONOMETRIQUES IX

2M renf - JtJ 2019

Exercice A6.13: Voici la preuve de la 15

ème

règle ci-dessus qu'il s'agit de compléter :

Posons f(x)=sin(x) et ainsi

r f(x)=........... r f (x) 1 =1 cos(..................) 1quotesdbs_dbs47.pdfusesText_47