[PDF] FONCTION LOGARITHME NEPERIEN - maths et tiques



Previous PDF Next PDF







FONCTION EXPONENTIELLE ET FONCTION LOGARITHME

FONCTION EXPONENTIELLE ET FONCTION LOGARITHME I Définition de la fonction exponentielle Propriété et définition : Il existe une unique fonction f dérivable sur ℝ telle que "=" et "(0)=1 Cette fonction s’appelle fonction exponentielle et se note exp Conséquence : exp(0)=1 Avec la calculatrice, il est possible d'observer l'allure de



Fonction exponentielle et logarithme

- Physique – Chapitre Acoustique (pour la fonction ln(x) et Log(x)) Domaines d'utilité: - Étude de fonctions contenant la fonction exponentielle ou logarithme - Vers la croissance comparée des fonctions logarithme, puissance, et exponentielle - Vers les fonctions logarithme décimal, exponentielle de base a, puissance de base α



Fonctions exponentielle et logarithme népérien Applications

FIGURE 1 – Représentation graphique de la fonction exponentielle et de sa tangente en x= 0 Conséquence 1 16 1 Pour tout nombre réel x, e x >0 2 Pour tous nombres réels xet y: e x = e y équivaut à x= yet e x >e y équivaut à x>y



5 FONCTIONS LOGARITHMES, EXPONENTIELLES, HYPERBOLIQUES ET

En repère orthonormé, la courbe représentative de la fonction exponentielle est symétrique de celle de la fonction logarithme par rapport à la première bissectrice 3 Fonction logarithme et exponentielle de base A Théorème : Logarithme de base a Soit a ∈]0, + ∞ [− {1 } , on appelle fonction logarithme de base a et on note log a



FONCTION LOGARITHME NEPERIEN - maths et tiques

1 Yvan Monka – Académie de Strasbourg – www maths-et-tiques FONCTION LOGARITHME NEPERIEN En 1614, un mathématicien écossais, John Napier (1550 ; 1617) ci- contre, plus connu sous le nom francisé de Neper publie « Mirifici



ETUDE D’UNE FONCTION EXPONENTIELLE 1

la fonction g est continue et strictement croissante sur [0 ; +∞[ Donc d’après le corollaire du théorème des valeurs intermédiaires, l’équation (????)= r admet unique solution ???? sur [0 ; +∞[



FONCTION LOGARITHME NEPERIEN EXERCICES CORRIGES

Compléter le tableau suivant, à partir de certaines valeurs (arrondies à 0,1) près de la fonction logarithme népérien a 2 3 4 6 9 8 27 72 216 ln (1) 6 ln (1) 16 ln( )a 0,7 1,1 Exercice n° 3 Comparez les réels x et y : x =3ln2 et y =2ln3 x = −ln5 ln2 et y = −ln12 ln5 Exercice n° 4

[PDF] Logarithme et exponentielles

[PDF] Logarithme et magnitude

[PDF] logarithme exercice corrigé

[PDF] Logarithme népérien

[PDF] logarithme neperien

[PDF] logarithme népérien 12

[PDF] logarithme népérien cours

[PDF] Logarithme neperien et etude de fonction

[PDF] Logarithme népérien et exponenetielle

[PDF] logarithme népérien exercice

[PDF] Logarithme népérien exercices d'équations

[PDF] logarithme népérien formule

[PDF] logarithme népérien limites

[PDF] logarithme népérien propriétés

[PDF] logarithme népérien terminale es

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frFONCTION LOGARITHME NEPERIEN En 1614, un mathématicien écossais, John Napier (1550 ; 1617) ci-contre, plus connu sous le nom francisé de Neper publie " Mirifici logarithmorum canonis descriptio ». Dans cet ouvrage, qui est la fina lité d'un trava il de 20 ans , Neper présente un outil permetta nt de simplifier le s calculs opératoires : le logarithme. Neper construit le mot à partir des mots grecs " logos » (logique) et arithmos (nombre). Toutefois cet outil ne trouvera son essor qu'après la mort de Neper. Les mathématiciens anglais Henri Briggs (1561 ; 1630) et William Oughtred (1574 ; 1660) reprennent et prolongent les travaux de Neper. Les mathématiciens de l'époque établissent alors des tables de logarithmes de plus en plus précises. L'intérêt d'établir ces tables logarithmiques est de permettre de substituer une multiplication par une addi tion (paragra phe II). Ceci peut paraît re dérisoire aujourd'hui, ma is il faut comprendre qu'à cette é poque, les calculatrices n'existent évidemment pas, les nombres décimaux ne sont pas d'usage courant et les opérations posées telles que nous les utilisons ne sont pas encore connues. Et pourtant l'astronomie, la navigation ou le commerce demandent d'effectuer des opérations de plus en plus complexes. I. Définition La fonction exponentielle est continue et strictement croissante sur ℝ, à valeurs dans

0;+∞

. D'après le théorème des valeurs intermédiaires, pour tout réel a de

0;+∞

l'équation e x =a admet une unique solution dans ℝ.

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frDéfinition : On appelle logarithme népérien d'un réel strictement positif a, l'unique solution de l'équation

e x =a . On la note lna . La fonction logarithme népérien, notée ln, est la fonction : ][ ln:0;+∞→ x!lnx

Remarques : - Les fonctions exp et ln sont des fonctions réciproques l'une de l'autre. - Les courbes représentatives des fonctions exp et ln sont symétriques par rapport à la droite d'équation

y=x

. - Dans le domaine scientifique, on utilise la fonction logarithme décimale, notée log est définie par :

log(x)= lnx ln10

Conséquences : a)

y=lnxavecx>0⇔x=e y b) ln1=0 lne=1 ln 1 e =-1 c) Pour tout x, lne x =x d) Pour tout x strictement positif, e lnx =x

Démonstrations : a) Par définition b) - Car

e 0 =1 - Car e 1 =e - Car e -1 1 e c) Si on pose y=e x , alors x=lny=lne x d) Si on pose y=lnx , alors x=e y =e lnx

II. Propriété de la fonction logarithme népérien 1) Relation fonctionnelle Théorème : Pour tous réels x et y strictement positifs, on a : ()lnlnln xyxy ×=+

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frDémonstration :

e ln(x×y) =x×y=e lnx ×e lny =e lnx+lny

Donc ()lnlnln xyxy ×=+

Remarque : Cette formule permet de transformer un produit en somme. Ainsi, celui qui aurait à effectuer 36 x 62, appliquerait cette formule, soit : log(36 x 62) = log(36) + log(62) ≈ 1,5563 + 1,7924 (voir table ci-contre) L'addition étant beaucoup plus simple à effectuer que la multiplication, on trouve facilement : log(36 x 62) ≈ 3,3487 En cherchant dans la table, le logarithme égal à 3,3487, on trouve 2232, soit : 36 x 62 = 2232. 2) Conséquences Corollaires : Pour tous réels x et y strictement positifs, on a : a)

ln 1 x =-lnx b) ln x y =lnx-lny c) lnx= 1 2 lnx d) lnx n =nlnx avec n entier relatif Démonstrations : a) 11 lnlnln ln1 0xx xx b) 11 lnlnln lnlnln x xxxy yyy c) ()

2lnlnl nlnlnxxxxxx=+=×=

d) On démontre ce résultat par récurrence. L'initialisation est triviale. La démonstration de l'hérédité passe par la décomposition : ()

1 lnlnln lnln ln(1 )ln nnn xxxxxnxxnx

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frMéthode : Simplifier une expression Vidéo https://youtu.be/HGrK77-SCl4 ()()

ln35 ln3 5A=-++

B=3ln2+ln5-2ln3

C=lne 2 -ln 2 e ln35 ln3 5 ln35 35 ln95 ln4 A=-++

B=3ln2+ln5-2ln3

=ln2 3 +ln5-ln3 2 =ln 2 3 ×5 3 2 =ln 40
9 C=lne 2 -ln 2 e =2lne-ln2+lne =2-ln2+1 =3-ln2

III. Etude de la fonction logarithme népérien 1) Continuité et dérivabilité Propriété : La fonction logarithme népérien est continue sur

0;+∞

. - Admis - Propriété : La fonction logarithme népérien est dérivable sur

0;+∞

et (lnx)'= 1 x . Démonstration : La fonction ln est continue sur

0;+∞

, donc pour tout réel a > 0, on a : lim x→a lnx=lna . Donc par composée de limites, en posant X=lnx lim x→a lnx-lna x-a =lim

X→lna

X-lna e X -e lna =lim

X→lna

1 e X -e lna X-lna Comme la fonction exponentielle est dérivable sur ℝ, on a : lim

X→lna

1 e X -e lna X-lna 1 e lna 1 a et donc lim x→a lnx-lna x-aquotesdbs_dbs47.pdfusesText_47