[PDF] Terminale S - Loi uniforme Loi exponentielle



Previous PDF Next PDF







Terminale S - Loi uniforme Loi exponentielle

D’où le nom de « loi de durée de vie sans vieillissement » donné quelquefois à la loi exponentielle Exemple : La durée de vie d’un ordinateur portable expr imée en années est une variable aléatoire ???? suivant la loi exponentielle de paramètre ????= 0,125



La loi exponentielle ou loi sans mémoire

suit une loi sans vieillissement, c'est-à-dire une loi exponentielle de paramètre λ , appelé constante radioactive (en s−1) et qui caractérise un radionucléide En effet, soit N 0 le nombre de noyaux radioactifs tous identiques initialement présents dans l'échantillon Au bout d'un temps t, la population de noyaux a diminué



Loi exponentielle TS - Les MathémaToqués

II Loi exponentielle de paramètre λ>0 On peut alors se demander si les phénomènes sans vieillissement correspondent à un type de loi particulier La réponse est oui, la loi exponentielle Définition [2] Soit λ un réel strictement positif La loi exponentielle de paramètre λ est la loi de probabilité ayant



P3 – LOI EXPONENTIELLE

P3 – LOI EXPONENTIELLE La Belle au Bois dormant est assise devant sa cheminée, sa quenouille à la main L’intervalle de temps T (en minutes) qui sépare l’instant où elle a pris place pour filer la laine et celui où elle va se piquer suit une loi exponentielle de paramètre λ = 2 1



Chapitre 13 : Intégration et loi exponentielle

Chapitre 13 : Intégration et loi exponentielle Terminale S 4 SAES Guillaume III Intégrale d’une fonction de signe quelconque Jusqu’à maintenant, nous avons vu des intégrales de fonction de signe positive



Variable Aléatoire Continue, Loi à densité

TSSI 2019/2020 Complété Cours Ch12 Loi à Densité, Loi Uniforme, Loi Exponentielle Lorsqu’une variable aléatoire X, est continue à valeurs les réels d’un intervalle I de R, sa loi de probabilité, dite continue n’est plus associée à la probabilité de chacune des valeurs En effetP(X = a) = 0 pour tout a 2 I



La fonction exponentielle - MATHEMATIQUES

La fonction exponentielle est l’unique fonction f, définie et dérivable sur Ret vérifiant f(0) = 1et pour tout réel x, f ′ (x) = f(x) Propriétés analytiques



Estimation paramétrique

Retour auplan du cours 2 1 Loi exponentielle Ici k= 1, Q = E( ) pour 2R du membre de droite de (2) converge en loi vers la limite annoncée Or par



Théorie des Probabilités - Stanford AI Lab

4 Convergences p s et en probabilité, loi des grands nombres 8 5 Fonctions caractéristiques, Transformées de Laplace 11 6 Convergence en loi, T C L 16 7 Conditionnement, espérance conditionnelle, lois de probabilité condition-nelles 21 8 Vecteurs gaussiens 31 9 Problèmes de synthèse 32 2

[PDF] loi exponentielle durée de vie sans vieillissement

[PDF] loi exponentielle exemple

[PDF] loi exponentielle exercice

[PDF] loi exponentielle exercice corrigé

[PDF] loi exponentielle exercices corrigés

[PDF] loi exponentielle formule

[PDF] loi exponentielle paramètre lambda

[PDF] loi exponentielle probabilité conditionnelle

[PDF] loi exponentielle sans mémoire

[PDF] loi exponentielle sans mémoire démonstration

[PDF] loi exponentielle sans vieillissement

[PDF] loi exponentielle terminale s

[PDF] loi exponentielle trouver lambda

[PDF] loi falloux

[PDF] loi ferry 1882

Loi uniforme. Loi exponentielle

I) Loi uniforme de probabilité sur [a : b]

La loi de probabilité qui admet

pour densité la fonction ࢌ constante

égale à

sur [ࢇ ; ࢈], est appelée loi uniforme sur [ࢇ ; ࢈]

Soit [ࢉ ; ࢊ] un intervalle inclus dans [ࢇ ; ࢈] et ࢄ une variable aléatoire

suivant la loi uniforme sur [ࢇ ; ࢈], alors : ࡼ ( ࢉ ൑ࢄ ൑ࢊ )= ׬

Propriétés :

Si ܺ est une loi de probabilité suivant une loi uniforme sur l'intervalle [ܾ ;ܽ signifie que ܺ sur [ܾ ; ܽ L'espérance mathématique d'une variable aléatoire

ܾ ; ܽ] est ܧ(ܺ

Exemples :

1) Dans une ville (idéale) les autobus passent à chaque arrêt exactement toutes les

20 minutes. On appelle ܺ

ܺsur l'intervalle [0 ; 20], on a

donc : ( 5 ൑ܺ et ܲ( ܺ ൒12 )= ܲ ( 12 ൑ܺ enfin le temps d'attente moyen qui est égal à ܧܺ soit 10 minutes. 2) La fonction " alea » d'une calculatrice affiche au hasard un nombre réel appartenant à ]0 ; 1[. Soit ܺ le nombre affiché, ܺ une loi uniforme sur ]0 ; 1[. On a donc : ( 0,15 ൑ܺ = 0,25 et ܲ( ܺ ൒0,8 ) = ܲ ( 0,8 ൑ܺ =0,2

Remarque :

Si

ܺ suit une loi uniforme sur [ܾ ;ܽ

répartition de ܺ

Pour tout ݔג

ܨ (ݔ)=ܲ( ܺ ൑ݔ )= 0 si ݔ ൑ܽ si ܽ൑ݔ൑ܾ

1 si ݔ ൒ܾ

II) Loi exponentielle

1) Définition

Soit un réel strictement positif. Une variable aléatoire ࢄ suit une loi exponentielle de paramètre lorsque sa densité de probabilité est la fonction ࢌ la fonction définie sur [ 0 ; + [ par :

Remarque :

On peut vérifier que ݂ est bien une densité de probabilité sur [0 ; + [ en effet :

ł݂ est continue et positive sur [0 ; + [

= 1 - ݁ donc lim

݂(ݔ)݀ݔ=1

Ce qui signifie que l'aire sous la courbe de

݂ sur [0 ; + [ est égale à 1

Résultats :

Soit ܺ une variable aléatoire suivant la loi exponentielle de paramètre , et ܽ et ܾ deux réels positifs ou nuls ,alors on a: = 1 - ݁

ܽ ) = 1 - ܲ ( ܽ ܺ

Exemples :

Exemple 1 : La durée de vie d'un ordinateur portable exprimée en années est une variable aléatoire ܺ suivant la loi exponentielle de paramètre ߣ La probabilité que la durée de vie de cet ordinateur portable dépasse 5 ans est ( ܺ ൒5)=1െ ׬ ൎ0,535 La probabilité que la durée de vie de cet ordinateur portable soit inférieure à 3 ans est ܲ( ܺ ൑3)= ׬ =1െ݁ ൎ0,313 Exemple 2 : Le temps d'attente exprimé en minutes au guichet d'une banque est une variable aléatoire T suivant la loi exponentielle de paramètre ߣ probabilité qu'un client attende moins de 8 minutes est égale à 0,7. a) Calculer une valeur approchée à 0,0001 de ߣ = 0,7

De là ݁

ൎ0,1505 b) Calculer la probabilité qu'un client attende entre 15 et 20 minutes ൎ0,055

2) Propriétés

a) Espérance mathématique d'une loi exponentielle

Soit ܺ

> 0 ),alors :

Démonstration :

La fonction ܩ

a pour dérivée ܩ (ݐ)= t݁ d'où = lim

0= lim

Comme on sait que lim

=0 et que lim =0 on a ܧ(ܺ Remarque : E(ܺ) représente la valeur moyenne de la variable aléatoire de ܺ

Exemple :

Si ܺ est une variable aléatoire suivant une loi exponentielle de paramètre ߣ sa valeur moyenne soit égale à 20, alors on peut écrire que =20 d'où ߣ b) Probabilité conditionnelle

Démonstration :

Soit ܺ une variable aléatoire suivant une loi exponentielle de paramètre ߣ et ܽ deux réels strictement positifs. On cherche la probabilité que ܺ supérieure ou égale à ܽ + ݐ sachant que ܺ est supérieure à ܽ

D'où

D'où le nom de " loi de durée de vie sans vieillissement » donné quelquefois à la loi exponentielle.

Exemple :

La durée de vie d'un ordinateur portable exprimée en années est une variable aléatoire ܺ suivant la loi exponentielle de paramètre ߣ La probabilité que la durée de vie de cet ordinateur portable dépasse 5 ans sachant qu'il fonctionne depuis déjà 2 ans est égale à ( ܺ ൒5 )= ܲ( ܺ ൎ0,687 c) Fonction de répartition Si ࢄ est une variable aléatoire suivant une loi exponentielle de paramètre

ࣅ, on définit la fonction ࡲ appelée fonction de répartition de ࢄ de la façon

suivante :

Pour tout

0 si ࢞൑૙

si ࢞൒ 0quotesdbs_dbs47.pdfusesText_47