[PDF] CHAPITRE Les puissances à exposants négatifs



Previous PDF Next PDF







Les puissances : cours de maths en 4ème - Mathovore

Les puissances de 10, d’exposants positifs ou négatifs, permettent d’écrire facilement de très grands et de très petits nombres 109 =1 000 000 000 7 7 11 10 0,000 000 1 10 10 000 000 − == = r - Calculs avec des puissances de 10 a) Écriture 5" 5 −5 1 34 34 " 10 100000 zéros = 5 10 0,0000 chiffres = N b) Produit de deux puissances



INTRODUCTION AUX PUISSANCES - Activités

Mathématiques 9e année – 2E2_Introduction aux puissances_Activités-corrigé page 3 1 000 000 mm 384 000 km = 384 000 km 384 000 000 000 mm 1 km ×= 3) Combien de fois il faut plier la feuille pour obtenir au moins 384 milliards de millimètres À zéro pli, la feuille n’est pas pliée (1 épaisseur);



Exercices sur les puissances - Académie de Poitiers

LES PUISSANCES - EXERCICES Exercice n°1 : Q C M : Pour chaque ligne, indiquer la ou les réponses exactes REPONSES A B C JUSTIFICATION N°1 « 3 puissance 4 s’écrit » 3×4 34 43 N°2 5×5×5×5×5×5 s’écrit 55 65 56 N°3 (-10)2 est égal à -100 -20 100 N°4 -10 2 est égal à -100 -20 100 N°5 26 est égal à 32 12 64



?? Puissances - AlloSchool

Puissances - Classe de 3e Exercice 1 Calculer les expressions suivantes et donner l’écriture scientifique du résultat A = 210 × 108 × 9× 107 4,2× 106 2 B = 81 × 104 × 50 × 105 900 × 10−10 4 Exercice 2 Calculer les expressions suivantes et donner l’écriture scientifique du résultat A = 1 200 × 108 × 40 × 104 16 × 10−2



Mathématiques – M DEVODDERE Les puissances Page 1 10

Mathématiques – M DEVODDERE Les puissances Page 1 Pour pouvoir lire les grands nombres facilement, on regroupe les chiffres par tranche de 3 en partant de la droite Exemple : 123456 s'écrit 123 456 1 Ecris alors les nombres suivants pour qu'ils soient plus faciles à lire 3456 = 12345 =



CHAPITRE Les puissances à exposants négatifs

CHAPITRE 2 Les puissances à exposants négatifs 1 Introduction : les puissances de 2 Nous connaissons bien la notation 2n où n est un entier positif : 2 10 = 2 21 = 2 2 2 42 = ⋅ =



Nombres et calculs - educationfr

articulation avec les mathématiques L’apprentissage des puissances de base quelconque peut être motivé par des situations mathématiques mettant en œuvre un produit itéré, comme le comptage de situations répétitives, ou l’observation de situations fractales dans la nature, les



PUISSANCES PRIORITE DES CALCULS EXERCICE 6D

Mathsenligne net PUISSANCES PRIORITE DES CALCULS EXERCICE 6D EXERCICE 1 : Calculer en respectant les priorités : A= 3 1 3 2 §· ¨¸ ©¹ B= 2 3 5 4 ¨¸ C= 3 23 32 §· ¨¸ ©¹ D= 2 54 25



PUISSANCES ET RACINES CARRÉES

6 sur 7 Yvan Monka – Académie de Strasbourg – www maths-et-tiques 4) Simplifier les écritures contenant des racines carrées Méthode : Simplifier une écriture contenant des racines carrées

[PDF] Mathématiques: racines carées

[PDF] Mathematiques: Raisonnment A Partir D'un Algorithme

[PDF] mathématiques: résoudre une équation

[PDF] Mathématiques: Tableau de variation

[PDF] Mathématiques: thales

[PDF] Mathématiques: Thorème de comparaison

[PDF] Mathematiques:calculer a² et b²

[PDF] Mathématiques:devoir maison

[PDF] Mathématiques:devoir maison numéro 5

[PDF] Mathématiques:Devoir maison n°6

[PDF] mathématiques:Problème de vecteur

[PDF] Mathématiques:résoudre une équation

[PDF] Mathématiques_ fonction trinôme

[PDF] Mathématiques~ km/h Vitesse Moyenne

[PDF] Mathematique_fractions

CHAPITRE 2

Les puissances à exposants négatifs

1. Introduction : les puissances de 2

Nous connaissons bien la notation

2n où n est un entier positif :

0 2 1= 1 2 2= 2

2 2 2 4= × =

32 2 2 2 8= × × =

42 2 2 2 2 16= × × × =

En général :

facteurs

2 2 2 ... 2Nn

nn" Î = × × ×????? Remarquons qu"il y a une relation évidente entre deux puissances successives de 2. Par exemple :

4 32 2 2= × ou encore :

4 3222=

5 42 2 2= × ou encore :

3 2222=

6 52 2 2= × ou encore :

6 5222=
etc.

En général :

()* 12 2 2Nn nn-" Î = ×

Ou encore : 1222

n n-=

Nous allons essayer de donner un sens à

32- : c"est une puissance avec l"exposant négatif -3. Pour

cela, nous faisons l"hypothèse que la formule (4.3) reste valable pour tout entier relatif n. Nous

obtenons de cette façon le tableau suivant : n -3 -2 -1 0 1 2 3 2n 1 8 1 4 1

2 1 2 4 8

:2 :2 :2 :2 :2 :2

Il est donc naturel de poser :

3

31 128 2

En d"autres termes :

32- est l"inverse de 32.

2Et en général :

( )122Nnnn-" Î = est l"inverse de 2n

2. Définition et exemples

Définition. Soit

*RaÎ et NnÎ. na- est l"inverse de na. Donc : 1n naa Remarque. Dans la définition on doit choisir 0a¹ puisqu"en général 1 1

0 0n= n"existe pas !

Corollaire de la définition. Comme

na- est l"inverse de na, on peut dire également que na est l"inverse de na-. En d"autres termes : 1n naa-=

Démonstration. 1 11n n n n

nna a a aa a

Exemples.

▪ Puissances de 3 1

11 133 3

2

21 133 9

3

31 133 27

▪ Puissances de -3 1

11 1 133 33-- = = = ---

2

21 1393

3

31 13273-- = = --

Remarquons que les puissances paires de -3 sont positives tandis que les puissances impaires de -3 sont négatives. Ceci est général :

Signe d"une puissance. Soit

*RaÎ et ZnÎ. a) Si 0a> alors 0na>. b) (i) Si 0a< et n est pair alors 0na>. (ii) Si 0a< et n est impair alors 0na<. n -4 -3 -2 -1 0 1 2 3 4 3n 1 81 1
27 1
9 1

3 1 3 9 27 81

n -4 -3 -2 -1 0 1 2 3 4 ( )3 n- 1 81 1
27- 1
9 1

3- 1 -3 9 -27 81

33. Propriétés Pour commencer, rappelons les propriétés des puissances à exposants positifs:

()()*, ,R Na b n m" Î " Î

Puissance d"un produit : ( )

nn nab a b=

Puissance d"un quotient :

nn na a b b Produit de puissances de même base : n m n ma a a+=

Quotient de puissances de même base :

si

1 si n m

n m m na n ma a n ma-

Puissance d"une puissance : ()

mn nma a= Nous allons prouver que ces formules restent valables pour des exposants négatifs.

· Puissance d"un produit

()( ) ( )*,R Z nn na b n ab a b" Î " Î =

Démonstration. La formule est déja valable si NnÎ (voir cours de 6e). Il reste donc à démontrer la

formule si Zn-Î, c.-à-d. si n m= - avec NmÎ. Dans ce cas :

1 par définition

1 formule pour exposants positifs 1 1 produit de deux fractions (voir cha p. 3) par définitionn m m m m m m m m n nab ab ab a b a b a b a b-

Exemple.

33 3 312 2

8a a a

· Puissance d"un quotient

( )( )*,R Zn n na aa b nb b

Démonstration. La formule est déja valable siNnÎ. Il reste donc à démontrer la formule siZn-Î,

c.-à-d. si n m= - avec NmÎ. Dans ce cas : 4 ( ) ( ) ( ) ( )1 1 1 n m m m n m m m m m m n m a a b a aaab b a b b ba b b- avec : ()par définition* = ()** =formule pour exposants positifs ()*** = formule sur les fractions

Exemple.

33 3

3 3 33 27

3 3x xx x

L"exemple suggère d"introduire une autre formule intéressante : ( )( )*,R Z n na ba b nb a

Démonstration.

1 1 1 nnn n n n n n n na a b bbb b a b a a a

Exemple.

4 43 3xx

· Produit de puissances de même base

()()*,R Zn m n ma n m a a a+" Î " Î =

Démonstration. La formule est déja valable si NnÎ et NmÎ. Il reste donc à démontrer la formule

si Zn-Î ou si Zm-Î. Nous allons nous restreindre au cas ou NnÎ et Zm-Î, c.-à-d. "m m= - avec "NmÎ. Alors : ""d"après (4.11) " si "

1 si "

n m n m n n m n m m m nn m n m m na a n maa a a aa a a a n ma- +

Exemple.

( )5 85 8 3

31 12 2 2 22 8

· Quotient de puissances de même base

( )( )*,R Znn m maa n m aa

Démonstration. ( )

par définition d"après (4.16)1 nn n m n m n m m maa a a a aa a

Exemple.

44 54 5

52

2 2 22

5· Puissance d"une puissance

*,R Z mn nma n m a a" Î " Î =

Démonstration. La formule est déja valable si NnÎ et NmÎ. Il reste donc à démontrer la formule

si Zn-Î ou si Zm-Î. Nous allons nous restreindre au cas ou NnÎ et Zm-Î, c.-à-d. "m m= -quotesdbs_dbs47.pdfusesText_47