[PDF] Matrice d’une application linéaire - Cours et exercices de



Previous PDF Next PDF







Applications linéaires, matrices, déterminants

Applications linéaires, matrices, déterminants Pascal Lainé 3 Exercice 11 Soit un endomorphisme de ℝ3 dont l'image de la base canonique =( 1, 2, 3) est :



Matrices et applications linéaires - Cours et exercices de

Matrices et applications linéaires Vidéo — partie 1 Rang d'une famille de vecteurs Vidéo — partie 2 Applications linéaires en dimension finie Vidéo — partie 3 Matrice d'une application linéaire Vidéo — partie 4 Changement de bases Fiche d'exercices ⁄ Matrice d'une application linéaire



TD 24 Matrices et applications linéaires - heb3org

Matrices et applications linéaires et Im(Φ) Exercice 8 : [corrigé] Donner les matrices de f−IdE et de f+2IdE dans les bases canonique de R3



V Applications linéaires

V 2 Applications linéaires et matrices V 2 c Casgénéral Donnonsunexempledecalculdematricedereprésentationdansdesbasesautres quelesbasescanoniques



Applications linéaires, matrices, déterminants

Applications linéaires, matrices, déterminants Pascal Lainé 2 2 Déterminer les coordonnées de ( 1), ( 2) et ( 3) dans la base canonique 3 Calculer une base de ker( )et une base de ( ) Allez à : Correction exercice 6 Exercice 7 Soit :ℝ3→ℝ3 définie pour tout vecteur =( , , )∈ℝ3 par :



Algèbre linéaire : Applications linéaires, matrices

Algèbre linéaire : Applications linéaires, matrices, déterminants 3°) Donner une base de son noyau et une base de son image Correction exercice 3



Daniel ALIBERT Espaces vectoriels Applications linéaires

Daniel Alibert – Cours et Exercices corrigés – Volum e 6 1 Daniel ALIBERT Espaces vectoriels Applications linéaires Matrices Diagonalisation et trigonalisation Objectifs : Savoir chercher une base d’un espace vectoriel, d’un noyau, d’une image Déterminer une matrice associée à une application linéaire Savoir calculer



Matrice d’une application linéaire - Cours et exercices de

A Calculer rg(A) et rg(B) Déterminer une base du noyau et une base de l’image pour chacune des applications linéaires associées f A et f B Correction H Vidéo [001099] Exercice 9 Soit E un espace vectoriel et f une application linéaire de E dans lui-même telle que f2 = f 1 Montrer que E =Ker f Im f 2 Supposons que E soit de



Exercices corrig´es Alg`ebre lin´eaire 1

la troisi`eme ´egalit´e r´esulte de l’axiome (II-2) et ou` la derni`ere ´egalit´e r´esulte de l’axiome (II-4) On en d´eduit que (−1)·xest le sym´etrique de x, c’est-`a-dire, −x Solution de l’exercice 2 : Nous devons montrer que pour tous x,y ∈ F et pour tout α ∈ R,

[PDF] matrices et études asymptotiques de processus discrets

[PDF] matrices et suites exercices

[PDF] matrices exercice

[PDF] matrices exercices corrigés pdf

[PDF] matrices exercices corrigés pdf ect

[PDF] matrices qui commutent definition

[PDF] MATRICES SPÉ MATH TERMINALE ES

[PDF] Matrices Spécialité Maths

[PDF] Matrices système maths spe

[PDF] matrices terminale es spé maths

[PDF] Matrices, valeurs propres et vecteurs propres

[PDF] matriochka signification

[PDF] matrix hair careers

[PDF] mattek sands blessure

[PDF] mattek sands knee

Matrice d’une application linéaire - Cours et exercices de Exo7

Matrice d"une application linéaire

Corrections d"Arnaud Bodin.

Exercice 1SoitR2muni de la base canoniqueB= (~i;~j). Soitf:R2!R2la projection sur l"axe des abscissesR~i

parallèlement àR(~i+~j). Déterminer MatB;B(f), la matrice defdans la base(~i;~j).

Même question avec Mat

B0;B(f)oùB0est la base(~i~j;2~i+3~j)deR2. Même question avec MatB0;B0(f). HH???Exercice 2

Soient trois vecteurse1;e2;e3formant une base deR3. On notefl"application linéaire définie parf(e1) =e3,

f(e2) =e1+e2+e3etf(e3) =e3. 1. Écrire la matrice Adefdans la base(e1;e2;e3). Déterminer le noyau de cette application. 2. On pose f1=e1e3,f2=e1e2,f3=e1+e2+e3. Calculere1;e2;e3en fonction def1;f2;f3. Les vecteursf1;f2;f3forment-ils une base deR3? 3. Calculer f(f1);f(f2);f(f3)en fonction def1;f2;f3. Écrire la matriceBdefdans la base(f1;f2;f3)et trouver la nature de l"applicationf. 4.

On pose P=0

@1 11 01 1

1 0 11

A . Vérifier quePest inversible et calculerP1. Quelle relation lieA,B,P etP1? H???Exercice 3 Soitfl"endomorphisme deR3dont la matrice par rapport à la base canonique(e1;e2;e3)est A=0 @1511 5

2015 8

87 61
A

Montrer que les vecteurs

e forment une base deR3et calculer la matrice defpar rapport à cette base. H???Exercice 4

SoitA=0

B

BBBBB@0:::0 1

... 1 0 0 1

1 0:::01

C CCCCCA. En utilisant l"application linéaire associée deL(Rn;Rn), calculerAppour p2Z. 1 H???Exercice 5

SoientA;Bdeux matrices semblables (i.e. il existePinversible telle queB=P1AP). Montrer que si l"une est

inversible, l"autre aussi; que si l"une est idempotente, l"autre aussi; que si l"une est nilpotente, l"autre aussi;

que siA=lI, alorsA=B. HH???Exercice 6

Soitfl"endomorphisme deR2de matriceA=223

52
23
dans la base canonique. Soiente1=2 3 et e 2=2 5 1. Montrer que B0= (e1;e2)est une base deR2et déterminer MatB0(f). 2.

Calculer Anpourn2N.

3. Déterminer l"ensemble des suites réelles qui vérifient 8n2N8 :x n+1=2xn+23 yn y n+1=52 xn23 yn. H???Exercice 7

Soitaetbdeux réels etAla matrice

A=0 @a21b

3 0 14

5 41 21

A Montrer que rg(A)>2. Pour quelles valeurs deaetba-t-on rg(A) =2 ? H???Exercice 8

SoientA=0

B

B@1 2 1

3 4 1 5 6 1

7 8 11

C

CA;B=0

B

B@2 21 7

4 31 11

01 24

3 32 111

C CA. Calculer rg(A)et rg(B). Déterminer une base du noyau et une base de l"image pour chacune des applications linéaires associéesfAetfB. H???Exercice 9 SoitEun espace vectoriel etfune application linéaire deEdans lui-même telle quef2=f. 1.

Montrer que E=KerfImf.

2. Supposons que Esoit de dimension finien. Posonsr=dimImf. Montrer qu"il existe une baseB= (e1;:::;en)deEtelle que :f(ei) =eisii6retf(ei) =0 sii>r. Déterminer la matrice defdans cette baseB. H???Exercice 10 Trouver toutes les matrices deM3(R)qui vérifient 2

1.M2=0 ;

2.M2=M;

3.M2=I.

HH???Exercice 11 Soitfl"application deRn[X]dansR[X]définie en posant pour toutP(X)2Rn[X]:f(P(X)) =P(X+1)+

P(X1)2P(X):

1. Montrer que fest linéaire et que son image est incluse dansRn[X]. 2. Dans le cas où n=3, donner la matrice defdans la base 1;X;X2;X3. Déterminer ensuite, pour une valeur denquelconque, la matrice defdans la base 1;X;:::;Xn. 3. Déterminer le no yauet l"image de f. Calculer leur dimension respective. 4. Soit Qun élément de l"image def. Montrer qu"il existe un uniqueP2Rn[X]tel que :f(P) =Qet

P(0) =P0(0) =0.

H???Exercice 12

Pour toute matrice carréeAde dimensionn, on appelle trace deA, et l"on note trA, la somme des éléments

diagonaux deA: trA=nå i=1a i;i 1. Montrer que si A;Bsont deux matrices carrées d"ordren, alors tr(AB) =tr(BA). 2. Montrer que si fest un endomorphisme d"un espace vectorielEde dimensionn,Msa matrice par rapport

à une basee,M0sa matrice par rapport à une basee0, alors trM=trM0. On note trfla valeur commune

de ces quantités. 3. Montrer que si gest un autre endomorphisme deE, tr(fggf) =0. H???3 Indication pourl"exer cice1 Nfest l"application qui àx y associexy 0 .Indication pourl"exer cice5 NAestidempotentes"il existe unntel queAn=I(la matrice identité).

Aestnilpotentes"il existe unntel queAn= (0)(la matrice nulle).Indication pourl"exer cice10 NIl faut trouver les propriétés de l"application linéairefassociée à chacune de ces matrices. Les résultats

s"expriment en explicitant une (ou plusieurs) matriceM0qui est la matrice defdans une base bien choisie

et ensuite en montrant que toutes les autres matrices sont de la formeM=P1M0P.

Plus en détails pour chacun des cas :

1. Im fKerfet discuter suivant la dimension du noyau. 2.

Utiliser l"e xercice

9 : K erfImfet il existe une base telle quef(ei) =0 ouf(ei) =ei. 3.

Poser N=I+M2

(et doncM=) chercher à quelle conditionM2=I.4

Correction del"exer cice1 NL"expression defdans la baseBest la suivantef(x;y)=(xy;0). Autrement dit à un vecteurx

y on associe le vecteur xy 0quotesdbs_dbs2.pdfusesText_2