[PDF] Exercices et Controˆles Corrig´es de M´ecanique du Point Mat



Previous PDF Next PDF







MÉCANIQUE GÉNÉRALE – Cours et exercices corrigés

Introduction un matériau déformable (le sable) À l’échelle des grains de sable, c’est un système de solides indéformables Il pourra donc être modélisé dans deux cadres différents,



INSTITUT SUPERIEUR DES ETUDES TECHNOLOGIQUES DE NABEUL

DEPARTEMENT DE GENIE MECANIQUE EXERCICE 1 : (Corrigé) Un bloc parallélépipédique, de poidsP , est soulevé grâce à une corde passant sur une poulie (Figure ci-contre) Le coefficient de frottement entre le bloc et le plan incliné est noté f 1 Déterminer, en fonction de P et f, l’expression de l’intensité de la force F



INSTITUT SUPERIEUR DES ETUDES TECHNOLOGIQUES DE NABEUL

DEPARTEMENT DE GENIE MECANIQUE EXERCICE 1 (Corrigé): Déterminer la matrice d'inertie des solides homogènes suivants: a Cylindre creux de rayons R1, R2 (rayons intérieur et extérieur) de hauteur H et de masse M b Cylindre mince de rayon R et d'épaisseur faible c Cône creux de rayon R et de hauteur H d Quart de cercle de rayon R



Exercices et examens résolus: Mécanique du point matériel

Exercice 2 Déterminer les coordonnées cylindriques puis sphériques du point M (2, 2 3, 4) Corrigé : Soit m le projeté orthogonale de M sur le plan (Oxy) m a pour coordonnées (2, 2 3, 0) En particulier, on a Om=4 et 1 I = 4(cos 3 E+ sin 3 F) ⇒Les coordonnées cylindriques de M sont donc : (4, 3,4)



Recueil d’exercices de mécanique générale de première année

Exercices de mécanique -1 ère année- 2 T D 1 1 : moteur de modèle réduit Sur la page suivante sont représentées deux vues du plan d’un moteur de modèle réduit d’avion radio-commandé



Travaux dirigés corrigés Mécanique du Point Matériel

Exercice 4 Considérons un repère orthonormé direct (O,i,j,k) r ℜ En tout point M(x,y,z) de l’espace, on définit une quantité physique f telle que : ( fx,y,z )= r2 avec r= OM et OM xi yj zk r = + + 1 Calculer le gradient du champ scalaire f, gradf, et la différentielle totale de f, df 2



Exercices et Controˆles Corrig´es de M´ecanique du Point Mat

L’objectif de cet exercice est de reformuler les expressions des op´erations vectorielles en utilisant la fonction de Kronecker δij 1 et le tenseur de Levi-Civita ǫijk 2 Les indices i,j,k∈ {1,2,3} ´etant donn´e que l’on travaille dans un espace vectoriel de dimension 3 1 la fonction de Kronecker est d´efinie par δij = ˆ 1 si i



COURS DE MECANIQUE GENERALE - WordPresscom

COURS DE MECANIQUE GENERALE ISAT - Institut Supérieur de l’Automobile et des Transports Université de Bourgogne - Nevers Année Universitaire 2002-2003 Paolo Vannucci



Exercices et examens résolus: Mécaniques des Systèmes de

Exercices et examens résolus: Mécaniques des Systèmes de Solides Indéformables M BOURICH 7 Corrigé 1- La résultante de [G 1] est : [G 1 A = [0 ,U ], donc l’invariant scalaire += )

[PDF] mécanique l1 exercices corrigés

[PDF] mécanique quantique cours

[PDF] mecanique quantique exercices corrigés gratuit

[PDF] mecanique quantique exercices corrigés pdf l2

[PDF] mecanique quantique exercices corrigés pdf l3

[PDF] mecanique quantique exercices corrigés pdf master

[PDF] mécanique quantique pour les nuls pdf

[PDF] mecanique seche linge

[PDF] Mécanique statique - résoudre un systeme

[PDF] mécanique statique exercice corrigé

[PDF] Mécanique, force, vecteur accélération

[PDF] Mécanique: Etude de la chaîne d'un solide

[PDF] Mécanique: les torseurs

[PDF] Mécanique: Masse et poids

[PDF] mecanisme d'action des hormones pdf

Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

CHAPITRE1

Rappels et compléments mathématiques

1.1 Exercices

1.1.1

Opérations sur les vecteurs

On donne trois vecteurs?A(3,2⎷2,⎷3),?B(2,⎷3,⎷2) et?C(1,2,2).

1. Calculer les normes??A?,??B?et??C?. En d´eduire les vecteurs unitaires?uA,?uB

et?uCdes directions, respectivement, de?A,?Bet?C.

2. Calculer cos(

??uA,?uB), cos(??uB,?uC) et cos(??uC,?uA), sachant que les angles sont com- pris entre 0 etπ.

3. Calculer les composantes des vecteurs?e1=?uB??uC,?e2=?uC??uAet?e3=?uA??uB.

4. En d´eduire sin(

??uA,?uB), sin(??uB,?uC) et sin(??uA,?uC). V´erifier ces r´esultats en utili- sant la question 2.

5. Montrer que?e1,?e2,?e3peuvent constituer une base. Cette base est-elle orthogo-

nale, norm´ee?

1.1.2Différentielle et dérivée d"un vecteur unitaire

SoitR(O,?i,?j,?k) un rep`ere cart´esien et consid´erons la base sph´erique (?er,?eθ,?e?).

1. Exprimer les vecteurs de la base sph´erique dans la base cart´esienne.

2. Calculer

∂?e r 3

Rappels et compl´ements math´ematiques

3. En d´eduired?er,d?eθetd?e?dans la base sph´erique.

4. Montrer que les diff´erentielles des vecteurs de la base sph´erique peuvent se mettre

sous la forme d?e en pr´ecisant l"expression du vecteur rotation ?Ω des vecteurs de la base sph´erique par rapport `aR. D´eduire les d´eriv´ees par rapport au temps des vecteurs de la base sph´erique par rapport `aR.

5. On consid`ere la base cylindrique (?eρ,?e?,?k) . Quel est son vecteur rotation par

rapport `aR? En utilisant les r´esultats pr´ec´edents, calculer la d´eriv´ee par rapport

au temps des vecteurs de la base cylindrique par rapport `aR.

6. Consid´erons un vecteur

?V=Vr?er+Vθ?eθ+V??e?. En utilisant les r´esultats pr´ec´e- dents, calculer la d´eriv´ee par rapport au temps de ?Vpar rapport `aR

1.1.3Déplacement élémentaire

On se propose de traiter dans cet exercice le d´eplacement ´el´ementaire dans les trois

syst`emes de coordonn´ees, cart´esiennes, cylindriques et sph´eriques et ce en utilisant les

r´esultatsde l"exercice 2

Consid´erons un rep`ere cart´esienR(O,?i,?j,?k). Soient (?eρ,?e?,?k) et (?er,?eθ,?e?) respective-

ment les bases cylindrique et sph´erique. SoitMun point rep´er´e par--→OMpar rapport `a

R. On consid`ere un d´eplacement infinit´esimal deMenM?tel queM?est tr`es proche de

M. On note alors le d´eplacement ´el´ementaire par--→OM?---→OM=d---→MM?=d--→OM

1. Dans le rep`ere cart´esien,--→OM=x?i+y?j+z?k. Calculer le d´eplacementd--→OMpar

rapport `aRdans la base cart´esienne.

2. Rappeler le vecteur rotation de la base cylindrique par rapport `aR. Partant de--→OM=ρ?eρ+z?k, calculer le d´eplacementd--→OMpar rapport `aRdans la base

cylindrique.

3. Rappeler le vecteur rotation de la base sph´erique par rapport `aR. Dans la base

sph´erique--→OM=r?er, calculer le d´eplacementd--→OMpar rapport `aRet ce dans cette base.

1.1.4Tube cathodique

On ´etudie le mouvement des ´electrons dans le tube cathodique d"un osilloscope. Les ´electrons arrivent enOavec une vitesse?v0=v0?iet traversent les plaques de d´eviation P

1etP2de longueurl. Les ´electrons sont soumis entre les plaques de d´eviation`a une

acc´el´eration uniforme?γ0=γ0?jet sont d´evi´es, figure ci-dessous. L"´ecran est `a la distance

D= 5lde la sortie des plaques. On exprime dans le reste de l"exercice les grandeurs vectorielles dans la base cart´esienne. la vitesse de la particule `a la sortie des plaques est?vAet fait un angleαavec?i. L"acc´el´eration des ´electrons entre les pointsAetEest nulle. Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

1.1 Exercices5

1. Etablir les ´equations horaires du mouvement

des ´electrons entre les plaques de d´eviation, x(t) ety(t). En d´eduire l"´equation de la tra- jectoirey=f(x).

2. Calculer la vitesse des ´electrons au pointA,

?v

A, en fonction dev0,letγ0. En d´eduire

l"angleα=?(?i,?vA).

3. Quelle est la nature de la trajectoire des ´elec-

trons entreAetE? En d´eduire les ´equations horairesx(t) ety(t). D´eterminer la d´eviation

δen fonction dev0,letγ0.

y xO j i 1P 2 P l D=5lδ E Aα

1.1.5Exercice

Un v´ehicule, que l"on peut consid´erer comme un point mat´erielM, se d´eplace par

rapport `a un r´ef´erentielR(O,xyz) avec un mouvement de translation uniforme de vitesse?V(M/R) telle que|?V(M/R)|=v. Le v´ehicule roule sur une bosse dont le profil peut

ˆetre repr´esent´e pary=f(x). On s"int´eresse au segment de la route [A,B].

1. Calculer la vitesse?V(M/R) en fonction

de xet de la d´eriv´ee premi`eref?(x) = df(x)/dxpar rapport `ax.

2. Calculer l"acc´el´eration?γ(M/R). En d´e-

duire que la composante de l"acc´el´eration selonOypeut se mettre sous la forme y(M/R) =v2f??(x) (f?2+ 1)2 f ??(x) ´etant la d´eriv´ee seconde def(x) par rapport `ax. AB M y x O y=f(x)

1.1.6Opérations sur les vecteurs : une autre approche

L"objectif de cet exercice est de reformuler les expressions des op´erations vectorielles en utilisant la

fonction de Kroneckerδij1et le tenseur de Levi-Civita?ijk2.Les indicesi,j,k? {1,2,3}´etant donn´e

que l"on travaille dans un espace vectoriel de dimension 3.

1. la fonction de Kronecker est d´efinie par

ij=?1 sii=j

0 si non

2. Le tenseur de Levi-Civita est d´efini par

ijk=???0 si au moins deux indices sont ´egaux1 si (i,j,k)?{(1,2,3),(2,3,1),(3,1,2)} -1 si (i,j,k)?{(1,3,2),(2,1,3),(3,2,1)}. Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

Rappels et compl´ements math´ematiques

On consid`ere un rep`ereRmuni de la base orthonorm´ee (?e1,?e2,?e3). La propri´et´e d"or- thonormalit´e de la base se traduit par?ei·?ej=δij, qui seront utilis´es dans la suite

de l"exercice, sauf mention contraire. Soient trois vecteurs?A(a1,a2,a3),?B(b1,b2,b3) et?C(c1,c2,c3).

1. Montrer que le produit scalaire

?A·?B=? i=1,3aibi.

2. Sachant que lai`emecomposante de?A??Bpeut s"´ecrire comme suit (?A??B)i=?3j,k=1?ijkajbk, en d´eduire que

A??B=?

i,j,k? ijkajbk?ei.

3. Montrer que le produit mixte

A·(?B??C) =?

i,j,k? ijkaibjck.

4. En utilisant le r´esultat de la question 2, montrer

A?(?B??C) = (?A·C)?B-(?A·B)?C

5. Montrer que

??A??B?

·??C??D?

=??A·?C???B·?D? -??A·?D???B·?C?

1.1.7Exercice : Opérations sur les vecteurs

On donne les trois vecteurs?V1(1,1,0),?V2(0,1,0) et?V3(0,0,2).

1. Calculer les normes??V1?,??V2?et??V3?. En d´eduire les vecteurs unitaires?v1,?v2

et?v3des directions respectivement de?V1,?V2et de?V3.

2. Calculer cos(

??v1,?v2), sachant que l"angle correspondant est compris entre 0 etπ.

3. Calculer?v1·?v2,?v2??v3et?v1·(?v2??v3). Que repr´esente chacune de ces trois

grandeurs?

1.1.8Exercice : Différentielle et dérivée d"un vecteur unitaire

Consid´erons la position d"un pointMdans le rep`ereR(O,xyz). Soient (?i,?j,?k),

(?eρ,?e?,?k) et (?er, ?eθ, ?eφ) respectivement les bases cart´esienne, cylindrique et sph´erique

associ´ees `a ce rep`ere. Le tenseur poss`ede les propri´et´es suivantes, que l"on neva pas d´emontrer i,j? ijk?ijl=δklet? i? ijk?ilm=δjlδkm-δjmδkl. Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

1.1 Exercices7

1. Calculer

∂?e

2. En d´eduired?eρetd?e?dans la base cart´esienne.

3. Montrer que les diff´erentielles des vecteurs de la base cylindrique peuvent se

mettre sous la forme d?e

ρ=dt?Ω??eρetd?e?=dt?Ω??e?

en pr´ecisant l"expression du vecteur rotation ?Ω des vecteurs de la base cylindrique par rapport `aR. D´eduire les d´eriv´ees par rapport au temps des vecteurs de la base cylindrique dansR.

4. Quel est le vecteur rotation de la base sph´erique par rapport `aR? En utilisant

les r´esultats de la question pr´ec´edente, d´eduire les expressions de d?e r dt,d?eθdtetd?eφdt.

1.1.9Exercice : Mouvement rectiligne

On effectue un test d"acc´el´eration sur une voiture arrˆet´ee au d´epart (vitesse initiale

v

0= 0). La route est rectiligne.

1. La voiture est chronom´etr´ee `a 20sau bout d"une distanceD= 140m.

1-a)D´eterminer l"expression de l"acc´el´erationγ, supos´ee constante.

1-b)D´eterminer l"expression de la vitessevDatteinte `a la distanceD.

2. Calculer la distance d"arrˆetLpour une d´ec´el´eration de 8ms-2?

1.1.10Exercice : Excès de vitesse

Un conducteur roule `a une vitesse constantev0= 120 km h-1sur une route r´ecti-

ligne d´epassant la limite autoris´ee. Un gendarme `a moto d´emarre `a l"instant o`u la voiture

passe `a sa hauteur et acc´el`ere uniform´ement. Le gendarme atteint la vitesse 100 km h-1 au bout de 12s.

1. Quel sera le temps n´ecessaire au gendarme pour rattraperla voiture?

2. Quelle distance aura-t-il parcourue?

3. Quelle vitesse aura-t-il atteinte?

Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

Rappels et compl´ements math´ematiques

1.1.11Exercice : Mouvement circulaire uniforme

Consid´erons un satellite g´eostationnaire en mouvement circulaire uniforme autour de la Terre sur une orbite de rayonr. Il est soumis `a une acc´el´erationγ=g0?R r?

2, o`u

g

0= 9.81m s-2etR= 6400 km , le rayon de la Terre. La p´eriode de r´evolution du

satellite est ´egale `a la p´eriode de rotation de la Terre sur elle mˆeme.

1. Calculer la p´eriodeTde rotation de la Terre en secondes. En d´eduire la vitesse

angulaire Ω.

2. D´eterminer l"altitude de l"orbite g´eostationnaire.

1.1.12Exercice : Mouvement sur une ellipse

quotesdbs_dbs47.pdfusesText_47