[PDF] Calcul d’un intervalle de conflance pour la moyenne dans une



Previous PDF Next PDF







Calcul d’un intervalle de conflance pour la moyenne dans une

L’objectif principal de ce travail de recherche est le calcul d’un intervalle de conflance pour la moyenne d’une population asym¶etrique contenant de nombreuses valeurs nulles Un intervalle de conflance est un outil permettant d’exprimer notre degr¶e de certitude µa propos des paramµetres d’un modµele statistique



Introduction aux méthodes statistiques

Statistique Inférentielle Chap 3 1 Introduction 2 Fluctuations d’échant 3 Estimation 4 Intervalle de fluctuation d’une moyenne empirique 5 Intervalle de confiance d’une moyenne théorique 1 Introduction aux méthodes statistiques Schéma de l’urne: X i Population cible, N individus Variable aléatoire X, Loi P



Statistiques Inférentielles

À partir de la moyenne xd’un échantillon, on veut déterminer un intervalle qui contient la vraie valeur de la moyenne avec 5 de chance de se tromper Pour α=0,05, on a t=1,96 On a donc P −1,96 6 X−µ √σ n 61,96 =0,95 et après calculs : P x−1,96 σ √ n 6µ6x+1,96 σ √ n =0,95 IV - Estimation de la fréquence par intervalle



Statistiques inférentielles : Estimation et tests statistiques

La statistique inférentielle Exercices Introduction Estimation ponctuelle Estimation par intervalle de con ance Déroulement d'un test statistique Introduction - L'inférence statistique consiste à tirer des conclusions sur une po-pulation à partir d'un échantillon Deux parties : - Estimation de paramètres - estsT d'hypothèses



Statistique : étude de cas Intervalles de confiance

Statistique : etude de cas Intervalles de con ance Myriam Maumy-Bertrand L’intervalle de con ance a 95 de la moyenne du d elai, en millisecondes,



6 - Notions de base en statistique

Estimation par intervalle : intervalle de confiance p0 +/- z α/2 √var p 0 Interprétation : pour α=5 , z α/2 = 1 96 « sur 100 échantillons successifs pris dans la population, 95 (en moyenne) conduisent à un intervalle de confiance qui contient le vrai pourcentage »



Chapitre 4 Variables Quantitatives continues

La moyenne calculØe sur les donnØes regroupØes n™est pas tou-jours Øgale à celle calculØe sur les donnØes individuelles, Øgale ici à 16 60 La fivraieflvaleur de la moyenne est celle calculØe sur les don-nØes individuelles La moyenne calculØe sur les donnØes regroupØes est une valeur

[PDF] moyenne maths

[PDF] moyenne meaning

[PDF] moyenne médiane étendue quartiles

[PDF] moyenne minimum pour passer en 1ere es

[PDF] Moyenne mobile 1 et 2

[PDF] moyenne nationale bac 2015

[PDF] moyenne nationale bac 2016

[PDF] moyenne nationale bac anglais

[PDF] moyenne nationale bac francais

[PDF] moyenne nationale bac francais 2016

[PDF] moyenne nationale bac francais ecrit

[PDF] moyenne nationale bac maths

[PDF] moyenne nationale bac par matiere

[PDF] moyenne nationale bac par matiere 2016

[PDF] moyenne nationale bac philo

MOHAMED RIDHA TEKAYA

Calcul d'un intervalle de con¯ance pour la moyenne dans le cadre du programme de ma^³trise en statistique pour l'obtention du grade de Ma^³tre µes sciences (M.Sc.)

FACULT

Avril 2006

c

°Mohamed Ridha Tekaya, 2006

Cet essai a pour objectif de calculer un intervalle de con¯ance pour la moyenne¹µa d'un intervalle de con¯ance.

Avant-propos

Je tiens µa remercier Monsieur Louis-Paul Rivest, mon directeur de recherche, pro- direction, et ses conseils judicieux tout au long de cette recherche. Finalement, je voudrais exprimer la profonde gratitude que j'ai envers mes parents, mes deux s¾urs et mon frµere pour leurs encouragements et leur soutien.

Table des matiµeres

ii

Avant-Propos

iii

Table des matiµeres

v

Liste des tableaux

vi

Table des ¯gures

vii

1 Introduction

1

2 Calcul d'intervalle de con¯ance pour une moyenne

2

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 3

2.3 Approche modµele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 12

3 La vraisemblance empirique

13 13

3.2 Intervalle de con¯ance pour¹. . . . . . . . . . . . . . . . . . . . . . .

15 19 3.4 22

3.5 Exemple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24
26
26
29

4.3 Exemple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

5 Conclusion

32

Bibliographie

33
v simple 34

B Macro SAS

36

C Le programme R pour l'exemple 2.1

40

D Le programme R pour l'exemple 2.2

41

E Le programme R pour l'exemple 3.1

44
46

Liste des tableaux

con¯ance ( 2:2 2:3 ) avec ¹= 1 etn= 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 non couverture de l'intervalle de con¯ance ( 2:5 de l'exemple 2.2 avecn= 40 . . . . . . . . . . . . . . . . . . . . . . . . 12 con¯ance ( 3:7 23
24
m= 60 etn= 140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Table des ¯gures

5 du quantile deÂ20:95;1pour l'exemple 2:2:avecn= 40 etp= 3=4 = 1=¸ 11

Chapitre 1

Introduction

L'objectif principal de ce travail de recherche est le calcul d'un intervalle de con¯ance µa propos des paramµetres d'un modµele statistique. L'annexe A donne une fonction R qui calcule les bornes d'un intervalle de con¯ance centrale. seulement µa des variables prenant des valeurs positives ou nulles.

Chapitre 2

Calcul d'intervalle de con¯ance

pour une moyenne

2.1 Notation

moyenne¹et de variance¾2 IC : est un acronyme pour Intervalle de Con¯ance. IC IC IC IC empirique. X=1 n P n s 2=1 n¡1P n i=1(Xi¡ T=p n( pour¹. t z Elle augmente le niveau d'information par rapport µa une estimation ponctuelle. Elle permet d'avoir un aper»cu des valeurs possibles pour¹. Un intervalle de con¯ance si pour chacun on calcule l'intervalle de con¯ance, alors dans 100(1¡®)% des cas le paramµetre¹devrait ^etre dans l'intervalle de con¯ance. Nous envisageons ici deux cas de calcul d'intervalle de con¯ance pour¹, nest quelconque. Si issu de la loiN(¹;¾2), une distribution normale de moyenne¹et de variance¾2, alors T=

X¡¹

s= p n bornes de l'intervalle de con¯ance µa 100(1¡®)% pour¹sont obtenues µa partir de

1¡®=Ph

¡tn¡1;®=2·

X¡¹

s= p n

·tn¡1;®=2i

=Ph

X¡tn¡1;®=2s

p n

X+tn¡1;®=2s

p n i IC ts=h

X¡tn¡1;®=2s

p n

X+tn¡1;®=2s

p n i on obtient

X¡¹

p n

»N(0;1):

montre que la distribution asymptotique lorsquentends vers1est T=

X¡¹

s= p n

»N(0;1):

(2.1)

1¡®=Ph

¡z®=2·

X¡¹

s= p n

·z®=2i

=Ph

X¡z®=2s

p n

X+z®=2s

p n i

On obtient l'intervalle de con¯ance suivant

IC tlc=h

X¡z®=2s

p n

X+z®=2s

p n i (2.2) Chapitre 2. Calcul d'intervalle de con¯ance pour une moyenne5€€

Quantiles of Standard Normal

valeur de t -3 -2 -1 0 1 2 3 -4 -2 0 2

Fig.2.1 {

Exemple 2.1.(Distribution deT)

f(x) =( pexp(¡x=¸) six >0

1¡psix= 0:

(2.3) Chapitre 2. Calcul d'intervalle de con¯ance pour une moyenne6

Y»Bernoulli(p))(

P[Y= 1] =p

E[Y] =p:

Z»Exponentielle(1=¸))n

E[Z] =¸:

2:1 ), nous faisons 2:3

A la lumiµere de la ¯gure

2.1 2:1 ) n'est dans le tableau 2.1 2:2 2:2 ) par P jTj< z0:025´ deTen ( 2:1 2:2 c

Le nombre de simulations

d

Le nombre de simulations

Taux de non

Taux de non

Taux de

P(Y= 1)

µa gauche en (%)

µa droite en (%)

0.25 0.2 12.8 87.0
0.50 0.8 9.0 90.2
0.75 0.8 6.6 92.6
0.85 1.0 5.2 93.8
0.95 0.2 5.6 94.2

Tab.2.1 {

con¯ance ( 2:2 2:3 ) avec¹= 1 et n= 40 e t=r

¿(1¡¿)

500
oµu¿est le taux de couverture ou de non couverture. Si¿= 95% alorset= 0:0097 et pour¿= 2:5% nous obtenonset= 0:0069.

En vertu du tableau

2.1 Chapitre 2. Calcul d'intervalle de con¯ance pour une moyenne82.3 Approche modµele intervalle de con¯ance pour¹. Appelons f(x;µ1;:::;µm)

¹=g(µ1;:::;µm)

A¯n de pouvoir estimer¹, en premier lieu, nous calculons (bµ1;:::;cµm) les estima- teurs du maximum de vraisemblance des paramµetres. En second lieu, nous utilisons la b¹=g(bµ1;:::;cµm); est l'estimateur du maximum de vraisemblance de¹. Pour calculer un intervalle de con¯ance pour¹, on estime tout d'abord les pa-

L=L(µ1;:::;µm)

nY i=1f(Xi;µ1;:::;µm): Dans la pratique pour simpli¯er les calculs des estimateurs, nous utilisons le loga- l(µ1;:::;µm) = log³

L(µ1;:::;µm)´

nX i=1log³ f(Xi;µ1;:::;µm)´ jl(µ1;:::;µm) = 0;pourj= 1;:::;m: Ensuite, nous ¯xons¹et maximisons la vraisemblance sous la contrainte¹= l p(¹) = maxµ

1;:::;µm; ¹=g(µ1;:::;µm)l(µ1;:::;µm):

Le calcul delp(¹) utilise pour chaque valeur de¹des estimateurs desµj,bµj(¹) pour j= 1;:::;m:Notons quelp(¹) est maximale µa¹=b¹l'estimateur du maximum de vraisemblance de¹. montre que

½(¹0) = 2³

l p(b¹)¡lp(¹0)´

»Â21:

(2.4)

Si¹0est la vraie valeur du paramµetre¹, l'intervalle de con¯ance pro¯l pour¹µa un

IC mv=n

0: 2³

l p(b¹)¡lp(¹0)´

21¡®;1o

(2.5) intervalle de con¯ance pour¹. Exemple 2.2.(Modµele exponentiel avec masse µa 0) 2:3 qui suivent la loi exponentielle de moyenne¸. A partir du modµele ( 2:3 ) nous voyons

¹=p¸=g(p;¸):

½(¹0) =¡2 log8

1¡¹0=b¸0´

0=b¸0´

n¡k³

1=b¸0´

n¡kexp³

¡Pn¡k

i=1xi=b¸0´

1¡b¹=b¸´

k³ b¹=b¸´ n¡k³

1=b¸´

n¡kexp³

¡Pn¡k

i=1xi=b¸´9 (2.6) oµu, bp=n¡k n ;b¸=P n i=1xi n¡k;b¹=bpb¸=P n i=1xi n et b

¸0=A+p

A

2¡4AB

2 avec,

A=³2n¹0+Pn

i=1xi¡k¹0

2(n¡k)´

etB=³¹0Pn i=1xi

2(n¡k)´

2:6 ) et les autres estimateurs des paramµetres inconnuesp,¸et¹sont Chapitre 2. Calcul d'intervalle de con¯ance pour une moyenne111.0 1.5 2.0

0 2 4 6 8

mu rhomu

Fig.2.2 {

quantile deÂ20:95;1pour l'exemple 2:2:avecn= 40 etp= 3=4 = 1=¸ Lsous aucune contrainte. Mais on obtientb¸0en maximisant la vraisemblance pro¯l sous la contrainte¹0=p¸0. Avant de chercher l'intervalle de con¯ance pour¹, nous tra»cons dans la ¯gure 2.2

A la lumiµere de la ¯gure

2.2 , nous voyons que la droite horizontale coupe la courbe de½(¹) en deux points distincts. Soientbietbsles abscisses respectifs de ces deux points. l'intervalle de con¯ance µa 95% pour¹est l'ensemble de valeurs comprises entrequotesdbs_dbs47.pdfusesText_47