[PDF] Physique - Dunod



Previous PDF Next PDF







Moment of Inertia & Rotational Energy

Moment of Inertia & Rotational Energy Physics Lab IX Objective In this lab, the physical nature of the moment of inertia and the conservation law of mechanical



Chapitre 8 Dynamique du point en réfé- rentiel non Galiléen

Remarque 8 3 La force d’inertie d’entraînement dérive-t-elle d’une énergie potentielle? La réponse dépend en fait du type de mouvement de R0 par rapport à R Dans les deux cas les plus classiquement étudiés correspondant à une rotation uniforme (le ”plateau tournant”)



Physique - Dunod

On peut déterminer cette force en deux étapes : La force fait intervenir k( − 0) Déterminer avec le schéma Rajouter un vecteur unitaire (ici u y) et déterminer le signe devant k Ici, il faut bien mettre un signe + car si le ressort est étiré, la force est dirigée vers le haut avec une projection positive sur uy



Dynamique dans un ref erentiel non galileen

supposera que la vitesse de rotation est constante, donc que d =R =~ dt =~0 ( 1) À ce mouvement de rotation s’ajoute le mouvement de révolution de la Terre autour du centre d’inertie du système solaire, c -à-d le mouvement de O0dans le référentiel de Copernic Soit M un point proche de la surface terrestre



Référentiels non galiléens

e est la «force d’inertie» d’entraînement – F c= ma est la «force d’inertie» de Coriolis • Ces pseudo-forces sont dites «d’inertie» car elles sont proportion-nelles à la masse 1On rappelle qu’il s’agit du référentiel lié au centre de masse du système solaire, dont les axes pointent vers 3 étoiles «fixes» A



Référentiels non galiléens Notes de cours

On dé nit la force de marée comme la somme de l'attraction gravitationnelle de Aet de la force d'inertie d'entraînement exercée sur une particule de masse mà la surface de la erreT (de l'eau par exemple) Montrer que l'e et de la force de marée est de générer deux "bourrelets" d'eau à la surface du globe terrestre



Vent-Force de Coriolis - Hautetfort

de la dépression Si de l'air suit une isobare, il s'ajoute alors une force centrifuge (ou « force d'inertie d'entraînement ») due à la rotation de l'air autour du centre Le bilan des forces montre alors que les masses d'air prennent une trajectoire circulaire dans le sens contraire des



Simulation and Analysis of Roller Chain Drive Systems

continuous contact force method is developed in this work The model of the contact surface between the rollers and sprocket has shown to be an important issue regarding the numerical stability of the simulation program and a model with a real tooth profile proves superior to other applied models With this model it is possible to perform a



ROTATION PARFAITE - TÜNKERS Maschinenbau GmbH

force axiale dynamique F A dyn dynamic axial force 2 200 N force radiale dynamique F R dyn dynamic radial force 10 000 N couple de sortie statique M ab stat static output torque 1 500 Nm * la combinaison de charges devra faire l’objet d’une validation par SOPAP Automation * combined loads only after consultation with SOPAP Automation TSH

[PDF] force d'inertie psychologie

[PDF] force d'inertie unité

[PDF] exercice electrostatique corrigé pdf

[PDF] balance de torsion de coulomb

[PDF] loi de coulomb exercices corrigés 1ere s

[PDF] force de laplace cours pdf

[PDF] loi de laplace magnétisme

[PDF] loi de laplace formule

[PDF] force de laplace exercices corrigés pdf

[PDF] force de lorentz exercice corrigé

[PDF] loi de laplace pdf

[PDF] force de laplace

[PDF] induction(correction exercice)

[PDF] propulsion fusée quantité de mouvement

[PDF] propulsion par réaction

TP16-0423-Book1 19/04/2017 11:32 Page i

Physique

exercices incontournables

TP16-0423-Book1 19/04/2017 11:32 Page ii

TP16-0423-Book1 19/04/2017 11:32 Page iii

MPMP*PTPT*

JEAN-NOËLBEURY

Physique

exercices incontournables 3 e

ÉDITION

TP16-0423-Book1 19/04/2017 11:32 Page iv

Avec la collaboration scientique deSÉBASTIENFAYOLLE Conception et création de couverture : Atelier3+

© Dunod, 2012, 2014, 2017

11 rue Paul Bert, 92240 Malakoff

www.dunod.com

ISBN 978-2-10-076265-1

TP16-0423-Book1 19/04/2017 11:32 Page v

Table des matières

Partie 1

M´ecanique

1. Référentiels non galiléens 3

2. Mécanique du solide 17

Partie 2

´Electronique

3. ALI-Oscillateurs 29

4. Signaux périodiques 44

5. Électronique numérique 49

Partie 3

Optique ondulatoire

6. Interférences 59

Partie 4

Électromagnétisme

7. Électrostatique 93

8. Magnétostatique 120

9. Équationsde Maxwell- Énergieduchampélectromagnétique 131

10. Propagation 143

Partie 5

Thermodynamique

11. Systèmes ouverts en régime stationnaire 191

12. Transferts thermiques 207

© Dunod. Toute reproduction non autorisée est un délit.

TP16-0423-Book1 19/04/2017 11:32 Page vi

Table des matières

13. Statique des fluides 235

14. Fluide en écoulement 241

15. Thermodynamique industrielle 252

Partie 6

Physique quantique

16. Approche ondulatoire de la mécanique quantique 285

Partie 7

Thermodynamique statistique

17. Facteur de Boltzmann 319

Index 327

Les énoncés dans lesquels apparaît un astérisque annoncent des exercices plus difficiles.

TP16-0423-Book1 21/04/2017 12:6 Page 1

Partie 1

M´ecanique

TP16-0423-Book1 21/04/2017 12:6 Page 2

1. Référentiels non galiléens 3

1.1 : Bille dans un tube (MP) 3

1.2 : Sismographe (MP) 6

1.3 : Circonférence en rotation et anneau (MP) 9

1.4 : Dynamique en référentiel tournant (MP) 12

2. Mécanique du solide 17

2.1 : Déplacement d"un solide sur un plan horizontal (MP) 17

2.2 : Détermination d"un coefficient de frottement (MP) 23

TP16-0423-Book1 21/04/2017 12:6 Page 3

1

Référentielsnon galiléens

Exercice 1.1 : Bille dans un tube (MP)

On considère un solideMde massemsusceptible de glisser sans frottement à l"intérieur d"un tube parallélépipédique d"extrémitéO. Les grandeursr 0 =OM 0 etv 0 caractérisent la position et la vitesse deMà l"instant initialt=0dansle repère lié au tube. Le tube de longueur 2?est dans le plan horizontal et tourne autour de l"axeOzvertical à la vitesse angulaireωconstante.

1.Déterminer l"équation différentielle enrdu mouvement deM.

2.Calculer le tempsτque mettraMpour sortir du tube avec?=0,1 m;r

0

0,01 m;v

0 =0 m.s -1 etω=2rad.s -1

3.Un ressort enfilé dans le tube est fixé à son extrémité enOet à son autre

extrémité au solideM. La longueur à vide du ressort est 2r 0 . Discuter la nature du mouvement deMsuivant la valeur deω.

Analyse du problème

Cet exercice traite du mouvement relatif d"un point matériel. Il faut bien définir

le référentiel absolu (considéré comme galiléen) et le référentiel relatif (considéré

comme non galiléen). Le bilan des forces se fait en travaillant d"abord dans le ré- férentiel galiléen. Il faut rajouter ensuite les forces d"inertie d"entraînement et de Coriolis pour appliquer le principe fondamental de la dynamique dans le référentiel non galiléen. 1. ?u r ?u ?u z q Oxy M q © Dunod. Toute reproduction non autorisée est un délit. 3

TP16-0423-Book1 21/04/2017 12:6 Page 4

Partie 1

Mécanique

Système :Bille de massem.

Référentiels :?

0

O;?i,?j,?k,t?galiléen et?=?

O;?u r ,?u ,?k,t? non galiléen.

Le vecteur rotation instantané de

?par rapport à? 0 vaut :?ω 0 =ω?k.

Le mouvement relatif dans?s"écrit :

-→OM=r?u r ;?v(M) =r?u r et ?a(M) =¨r?u r

Le vecteur unitaire?u

r est fixe dans?. La dérivée par rapport au temps der?u r dans ?donne bienr?u r

Bilan des forces :

Le mouvement se fait sans frottement, la réaction du support est donc or- thogonale au petit déplacement de la bille par rapport au tube. La réaction du support a donc une composante nulle sur ?u r .La réaction du support est donc ?R=R 1 ?u +R 2 ?k

Le poids de la massemest :

?P=m?g

La force d"inertie d"entraînement est :

?f ie (M)=mω 2 -→OM

La force d"inertie de Coriolis :

?f ic (M)=-2m?ω 0 ??v(M) =-2mωr?u Principe fondamental de la dynamique (PFD) dans le référentiel non galiléen : m?a(M) =?R+?P+?f ie +?f ic

La projection dans la base

?u r ,?u ,?k?donne : ??????m¨r=mω 2 r 0=R 1 -2mωr 0=R 2 -mg L"équation différentielle du mouvement s"obtient à partir de la première projection du PFD :

¨r-ω

2 r=0 4

TP16-0423-Book1 21/04/2017 12:6 Page 5

Chapitre 1

Référentiels non galiléens

2.L"équation caractéristique s"écrit :x

2 2 =0.On en déduit alors x=±ω La solution de l"équation différentielle s"écrit donc : r=Aexp(ωt)+Bexp(-ωt) La dérivée derpar rapport au temps est :r=Aωexp(ωt)-Bωexp(-ωt).

Àt=0,r(0)=r

0 etr(0)=v 0 On a deux équations pour déterminer les constantes d"intégrationAetB: ????A+B=r 0 (éq. 1)

Aω-Bω=v

0 (éq. 2) On fait les combinaisons linéaires suivantes :(1)ω+(2)et(1)ω-(2).

On a alors :

????2Aω=r 0

ω+v

0

2Bω=r

0

ω-v

0 .D"où : ???????A=r 0

ω+v

0 2ω B=r 0

ω-v

0 2ω

La bille quitte le tube pourr=?.Soit :

1 2? r 0 +v 0 exp (ωt)+12? r 0 -v 0 exp (-ωt)=? On pose :X=exp(ωt).En multipliant parexp(ωt),on est ramené à une

équation du second degré :

1 2? r 0 +v 0 X 2 +1 2? r 0 -v 0 =?X La résolution numérique donne :X=19,95ett=1,5s.

3.L"équation différentielle s"écrit :

m¨r=mω 2 r-k(r-2r 0

Elle se met sous la forme :

¨r-?

2 -k m? r=2kr 0 m k m, le système diverge. k m, on a l"équation d"un oscillateur harmonique. Ces deux résultats sont prévisibles physiquement. Si la constante de raideur est très petite, alors la force d"inertie d"entraînement l"emporte devant la force exercée par le ressort. Comme ?f ie est centrifuge, on prévoit bien un système qui diverge. © Dunod. Toute reproduction non autorisée est un délit. 5

TP16-0423-Book1 21/04/2017 12:6 Page 6

Partie 1

Mécanique

Exercice 1.2 : Sismographe (MP)

La partie sensible du sismographe est une masse munie d"un index et d"une tige. Cet ensemble de massemassujetti à se déplacer verticalement est suspendu à un ressort. Le ressort est fixé enAsur un bâti. La partie sensible (masse + index + tige) est par ailleurs reliée à un amortisseur qui exerce une force de frottement fluide-λ?Voù?Vest le vecteur vitesse de la masse dans le référentiel lié au bâti. Le référentiel terrestre d"origineGest galiléen. Un tremblement de terre est modélisé par une vibration verticale harmonique de translation :S(t)=S 0 cos(ωt)oùS(t) repère le déplacement vertical du sol par rapport au référentiel galiléen du lieu. On définitH(t)=h(t)-h eq la grandeur qui repère le déplacement de la massempar rapport au repos dans le référentiel lié au bâti. S(t) h(t) G O y X xA partie sensible de masse m

1.Établir l"équation différentielle enH(t) du mouvement de la masse. Quel est

le sens physique de la pulsation propreω 0 et du facteur de qualitéQ?

2.On représente graphiquement????H

S ????en fonction deω(rad.s -1 6

TP16-0423-Book1 21/04/2017 12:6 Page 7

Chapitre 1

Référentiels non galiléens

L"étude du spectre de Fourier des vibrations sismiques montre que leurs périodes gie transportée par des ondes longitudinales, assez loin de l"épicentre, est dans le domaine de période allant de 1 s à 10 s. On souhaite une réponse uniforme de l"appareil dans la gamme de fréquence correspondante. Comment doit-on choisir 0 etQ? Quel est l"inconvénient majeur? Comment doit-on choisir la masse?

Analyse du problème

Cet exercice traite du mouvement relatif d"un point matériel. Il faut bien définir

le référentiel absolu (considéré comme galiléen) et le référentiel relatif (considéré

comme non galiléen). Le bilan des forces se fait en travaillant d"abord dans le ré- férentiel galiléen. Il faut rajouter ensuite les forces d"inertie d"entraînement et de Coriolis pour appliquer le principe fondamental de la dynamique dans le référentiel non galiléen. 1. O yY x A eq D M S(t) h(t) G O yY X xA DM reposau de terretremblement

Système :Point matérielMde massem.

Référentiels :Le référentiel terrestre? 0 =?G;?u x ,?u y ,?u z ,t?est galiléen.

Le référentiel lié au bâti

?=?O;?u x ,?u y ,?u z ,t?est non galiléen.?est en translation par rapport à 0 ,donc?ω 0 =?0.

Bilan des forces :

Force exercée par le ressort :

?F=k((D-h)-? 0 )?u y © Dunod. Toute reproduction non autorisée est un délit. 7

TP16-0423-Book1 21/04/2017 12:6 Page 8

Partie 1

Mécanique

Poids :

?P=m?g

Force d"inertie d"entraînement :

?f ie (M)=-m?a e (M)=-m? d 2 -→GO dt 2 0 Or -→GO=S(t)?u y =S 0 cos(ωt)?u y ,d"où: ?f ie (M)=mω 2 S 0 cos(ωt)?u y

Force d"inertie de Coriolis :

?f ic (M)=?0 puisque?ω 0 =?0. La longueur du ressort à l"équilibre n"est pas égale à la longueur du ressort

à vide.

Sur le schéma, il faut prendre l"initiative de rajouter des grandeurs intermédiaires : longueur à l"équilibre, distanceDpour déterminer les longueurs du ressort au repos sans tremblement de terre et à un instanttquelconque avec un tremblement de terre. On peut déterminer cette force en deux étapes :

La force fait intervenirk(?-?

0 ). Déterminer?avec le schéma.

Rajouter un vecteur unitaire (ici?u

y ) et déterminer le signe devantk. Ici, il faut bien mettre un signe+car si le ressort est étiré, la force est dirigée vers le haut avec une projection positive sur?u y

PFD dans le référentiel non galiléen :

m?a(M) =?P+?T+?fquotesdbs_dbs8.pdfusesText_14