[PDF] Probabilit es conditionnelles



Previous PDF Next PDF







Probabilit es conditionnelles

Probabilit es conditionnelles Exercice 1 Dans une usine, on utilise conjointement deux machines M 1 et M 2 pour fabriquer des pi eces cylindriques en s erie Pour une p eriode donn ee, leurs probabilit es de tomber en panne sont respectivement 0;01 et 0;008



Exercices de probabilités (probabilités conditionnelles)

Exercices de probabilités (probabilités conditionnelles) Les exercices 10 et 13 marchent ensemble, ainsi que le 25 1 En 2005, un laboratoire de recherche met au point un test de dépistage de la maladie responsable de la



PROBABILITES – EXERCICES CORRIGES

Probabilité conditionnelles Exercice n° 11 Dans un magasin d’électroménager, on s’intéresse au comportement d’un acheteur potentiel d’un téléviseur et d’un magnétoscope La probabilité pour qu’il achète un téléviseur est de 0,6



Exercices : probabilit´es conditionnelles

Terminale sp´ecialit´e Probabilit´es conditionnelles Exercices : probabilit´es conditionnelles Exercice 1 - On donne dans le tableau suivant, la r´epartition des adh´erents d’un club de bridge selon les crit`eres : V :« vaccin´e » G :« gripp´e » G non G total V 19 1 20 non V 21 9 30 total 40 10 50 On interroge un adh´erent au



Exercice 1 Compléter un arbre de probabilité

Version corrigée Fiche d’exercices Probabilités conditionnelles Page 4 sur 4 Dans chacun des cas, dire si les évènements A et B sont indépendants 1 p(A)= 1 5, p(B)= 1 2 et p(A\B)= 1



PROBABILITÉS CONDITIONNELLES - maths et tiques

PROBABILITÉS CONDITIONNELLES I Exemple d’introduction Un laboratoire pharmaceutique a réalisé des tests sur 800 patients atteints d’une maladie Certains sont traités avec le médicament A, d’autres avec le médicament B Le tableau présente les résultats de l’étude : Médicament A Médicament B Total Guéri 383 291 674



Exercices sur les Probabilités conditionnelles Exercice 1D

Exercices sur les Probabilités conditionnelles Exercice 1D 1 Les 1 500 employés d'une grande entreprise se divisent en deux catégories : cadres et ouvriers On sait que cette entreprise emploie 40 d'hommes et 60 de femmes De plus, parmi les hommes 63 sont cadres alors que parmi les femmes 48 sont cadres



Terminale S - Probabilités conditionnelles - Exercices

Probabilités conditionnelles – Loi binomiale - Exercices Révisions de probabilités Exercice 1 Exercice 2 1/10 Probabilités conditionnelles – Loi binomiale - Exercices Mathématiques terminale S obligatoire - Année scolaire 2019/2020



Première générale - Probabilités conditionnelles - Exercices

Probabilités conditionnelles et indépendance - Exercices Exercice 1 Exercice 2 Exercice 3 Un groupe d’élèves d’une classe de Terminale S veut organiser un concert de musique à l’intérieur du lycée Il fait une enquête pour connaître le nombre d’élèves souhaitant assister à ce concert

[PDF] Probabilites conditionnelles et indépendance

[PDF] Probabilités conditionnelles et lois binomiales

[PDF] probabilités conditionnelles exercices corrigés

[PDF] probabilités conditionnelles exercices corrigés pdf

[PDF] Probabilités conditionnelles Terminale S

[PDF] probabilités conditionnelles URGENT

[PDF] Probabilités dans un évènement contraire

[PDF] probabilités de term Es

[PDF] Probabilités des évènements A inter B, A union B

[PDF] probabilités devoir maison et fonction

[PDF] Probabilités devoir seconde

[PDF] Probabilités échecs

[PDF] probabilités en 2nde

[PDF] probabilités en anglais

[PDF] Probabilités en mathématiques

IUT Aix-en-ProvenceAnnee 2012-2013

DUT Informatique TD Probabilitesfeuille n4Probabilites conditionnelles Exercice 1Dans une usine, on utilise conjointement deux machinesM1etM2pour fabriquer des pieces

cylindriques en serie. Pour une periode donnee, leurs probabilites de tomber en panne sont respectivement 0;01

et 0;008. De plus la probabilite de l'evenement \la machine M2 est en panne sachant que M1 est en panne" est

egale a 0;4. 1. Quelle est la probabilit ed'a voirles deux mac hinesen panne au m ^ememomen t? 2. Quelle est la probabilit ed'a voirau moins une mac hinequi fonctionn e?F

Exercice 2

A l'IUT de Digne, 40% de garcons et 15% des lles mesurent plus de 1;80m. De plus, 60% des

eleves sont des lles. Sachant qu'un eleve, choisi au hasard, mesure plus de 1;80m, quelle est la probabilite que

ce soit une lle?F

Exercice 3Dans une universite, une enqu^ete sur le tabagisme a donne les resultats suivants :HommesFemmes

Fumeurs42075

Non fumeurs280225

On choisit au hasard l'une des 1000 personnes interrogees. On noteAl'evenement \en reponse a l'enqu^ete, la

personne a declare fumer" et on noteBl'evenement \en reponse a l'enqu^ete, la personne a declare ^etre du sexe

feminin".

1.AetBsont-ils independants pour l'equiprobabilitePdenie sur l'ensemble des 1000 personnes inter-

rogees? 2.

M ^emequestion p ourla m ^emeenqu ^etedans une autre un iversiteou les r esultatsson tconsign esdans le

tableau suivant :HommesFemmes

Fumeurs440360

Non fumeurs11090F

Exercice 4Au cours de la fabrication d'un certain type de lentilles, chacune de ces lentilles doit subir deux

traitements notesT1etT2. On preleve au hasard une lentille dans la production. On designe parAl'evenement : "la lentille presente un defaut pour le traitementT1". On designe parBl'evenement : "la lentille presente un defaut pour le traitementT2".

Une etude a montre que :

la probabilite qu'une lentille presente un defaut pour le traitementT1estP(A) = 0;10; la probabilite qu'une lentille presente un defaut pour le traitementT2estP(B) = 0;20; la probabilite qu'une lentille presente aucun des deux defauts est 0;75. 1.

Calculer la probabilit equ'une len tille,pr eleveeau h asarddans la pr oduction,pr esenteun d efautp ourau

moins un des deux traitementsT1ouT2. 2.

Calculer la pr obabilitequ'une len tille,pr eleveeau hasard dans la pro duction,pr esenteun d efautp ourles

deux traitementsT1etT2. 3.

Les evenementsT1etT2sont ils independants?

4.

Calculer la probabilit equ'une len tille,pr eleveeau hasard dans la p roduction,pr esenteun d efautp ourun

seul des deux traitements. 5.

Calculer la probabilit equ'u nelen tille,pr eleveeau hasard dans la pro duction,pr esenteun d efautp ourle

traitementT2, sachant qu'il presente un defaut pour le traitementT1. F 1

Exercice 5Dans une population

, deux maladiesM1etM2sont presentes respectivement chez 10% et 20%.

On suppose que le nombre de ceux qui sourent des deux maladies est negligeable. On entreprend un depistage

systematique des maladiesM1etM2. Pour cela, on applique un test qui reagit sur 90% des malades deM1, sur

70% des maladesM2, et sur 10% des individus qui n'ont aucune de ces deux aections.

1.

Quand on c hoisitau hasard un individu !dans

, quelle est la probabilite pour que le test reagisse? 2. Sac hantque p ourun individu !, le test a reagi, donner les probabitites : p ourque le test ait r eagi acause de la maladie M1. p ourque le test ait r eagi acause de la maladie M2.

p ourque le test ait r eagialor sq uel'individu n'est infect epar qu'aucune des deux maladies M1etM2.

F

Exercice 6Un laboratoire a mis au point un alcootest. On sait que 2% des personnes contr^olees par la police

sont reellement en etat d'ebriete. Les premiers essais ont conduit aux resultats suivants :

lorsqu'une p ersonneest r eellementen etatd' ebriete,95 fois sur 100 l'alco otestse r evelep ositif;

lorsqu'une p ersonnen'est pas en etatd' ebriete,96 fois sur 100 l'alco otestse r evelen egatif.

Quelle est la probabilite pour qu'une personne soit reellement en etat d'ebriete lorsque l'alcootesr est positif?

F Exercice 7A l'IUT, parmi les etudiants 40% suivent l'optionA1, 30% suivent l'optionA2et 30% suivent

l'optionA3. Chaque etudiant suive une seule option. La proportion d'etudiants qui n'ont pas la moyenne dans

l'optionA1est de 10%, dans l'optionA2de 5% et dans l'optionA3de 5%. On choisit un etudiant au hasard.

1. Calculer la probab ilitequ'il n'ait pas la mo yenne. 2.

Sac hantqu'il n'a pas la mo yenne,calculer la probabilit ea p osterioriqu'il ait suivi l'option A1,A2ouA3.

F

Exercice 8On a vole la Joconde. Deux ans plus tard, en perquisitionnant chez un collectionneur, la police

retrouve Mona Lisa. Un doute plane sur l'authenticite de la toile retrouvee. On estime a 80% la probabilite

pour que ce soit celle que Leonard a peinte. On consulte alors deux experts en peinture de la Renaissance. Le

premier, qui se trompe une fois sur cinq, declare que le tableau est authentique. Le deuxieme, qui se trompe

deux fois sur onze, annonce que c'est une copie. Les conclusions des experts sont independantes. Calculer la

probabilite d'avoir retrouve la Joconde authentique.F

Exercice deMonty Hall propose le jeux televise suivant : un candidat doit choisir entre trois portes de garages

fermees. Derriere une des portes se trouve une voiture, derriere les autres portes se trouvent une chevre. Lorsque

le candidat a choisi une porte, Monty ouvre une des deux portes restantes pour faire apparaitre une chevre (ce

qui est possible). Il propose ensuite au candidat de rester devant la porte qu'il a choisi, ou bien de changer.

A votre avis, le candidat doit-il rester? changer? cela n'a aucune importance? (Justier votre reponse) ?Pour vos revisions, vous pouvez vous aider du cours en ligne suivant :

IUT Aix-en-ProvenceAnnee 2012-2013

DUT Informatique TD Probabilitesfeuille n4Probabilites conditionnelles (Solutions) Correction 11.P(M1\M2) =P(M1)P(M2=M1) = 0;010;4 = 0;004.

2.P(M1[M2) = 1P(M1\M2) = 0;996

Correction 2T: \evenement mesure plus de 1;80m"

F: \evenement ^etre une lle"

On aP(F) = 0;6,P(T=F) = 0;4 etP(T=F) = 0;15. Ainsi :

P(F=T) =P(F\T)P(T\F) +P(T\F)

P(F)P(T=F)P(F)P(T=F) +P(F)P(T=F)= 0;36:

Correction 31.P(A) = 0;495,P(B) = 0;3 etP(A\B) = 0;075. Comme 0;4950;3 = 0;14856= 0;075, les evenements ne sont pas independants.

2.P(A) = 0;8,P(B) = 0;45 etP(A\B) = 0;36. Comme 0;80;45 = 0;36, les evenements sont

independants. Correction 41.P(A[B) = 1P(A[B) = 1P(A\B) = 10;75 = 0;25

2.P(A\B) =P(A) +P(B)P(A[B) = 0;1 + 0;20;25 = 0;05

3.

Non car P(A\B)6=P(A)P(B)

4. L' evenement"la len tillepr esenteun d efautp ourles deux traitemen tsT1etT2" est represente par :

D= (A\B)[(A\B) = (ArA\B)[(BrA\B)

AinsiP(D) =P(A\B) +P(A\B) = (P(A)P(A\B)) + (P(B)P(A\B)) == 0;2

5.P(BjA) =P(B\A)P(A)=0;050;1= 0;5

Correction 5On note :

{M1="^etre atteint parM1", {M2="^etre atteint parM2", {N="^etre atteint par aucune maladie" {R="le test reagit". Le texte dit :P(M1) = 0;1,P(M2) = 0;2,P(N) = 0;7,P(RjM1) = 0;9,P(RjM2) = 0;7 etP(RjN) = 0;1,

1.P(R) =P(M1\R)+P(M2\R)+P(N\R) =P(M1)P(RjM1)+P(M2)P(RjM2)+P(N)P(RjN) =

0;3. 2. { P(M1jR) =P(M1\R)P(R)= 0;3 {P(M2jR) =P(M2\R)P(R)=715 t0;47 {P(NjR) =P(N\R)P(R)=730 t0;23

Correction 6SoientE= " la personne contr^olee est en etat d'ebriete " etA= "l'alcootest est positif". Les

indications fournies peuvent s'ecrire :P(E) = 0;02,P(AjE) = 0;95 etP(AjE) = 0;96. On a :

P(EjA) =P(A\E)P((A\E)[(A\E))

P(E)P(AjE)P(E)P(AjE) +P(E)P(AjE)t0;326

1 Correction 7Pouri2 f1;2;3g, on noteBi= "suivre l'optionAi". On noteCl'evenement ne pas avoir la moyenne. On a P(A1) = 0;4P(A2) = 0;3P(A3) = 0;3P(CjA1) = 0;1P(CjA2) = 0;5P(CjA3) = 0;5:

1.P(C) =P(CjA1)P(A1) +P(CjA2)P(A2) +P(CjA3)P(A3).

2.P(AijC) =P(CjAi)P(Ai)P(C)

Correction 8On note :

{A=\le tableau est authentique", {B= \le premier expert declare le tableau authentique, le deuxieme le declare faux" =E1\E 2, {E1=\le premier expert a raison", {E2=\le deuxieme expert a raison".

On aP(A) = 0;8,P(A) = 0;2,P(E1) = 0;4,P(E2) =911

. On aP(BjA) =P(E

1jA)P(E2jA) etP(BjA) =

P(E

2jA)P(E1jA).

P(AjB) =P(A)P(BjA)P(A)P(BjA) +P(A)P(BjA)t0;84

2

IUT Aix-en-ProvenceAnnee 2012-2013

DUT Informatique TD Probabilitesfeuille n4Probabilites conditionnelles (Methodes) ZComment calculer des probabilites conditionnelles?

SoientAetBdeux evenements d'un univers

etPune probabilite sur . On cherche a calculerPB(A) =

P(A=B).

Verier si le texte fournit cette information en langage commun ou non.

Utiliser la denition :PB(A) =P(A=B) =P(A\B)P(B).

Si on conna^tP(B=A) etP(B=A) alors :

P(A=B) =P(A\B)P(B)

P(A\B)P((A\B)[(A\B))

P(A\B)P(A\B) +P(A\B)

P(A)P(B=A)P(A)P(B=A) +P(A)P(B=A)

On retrouve la formule de Bayes!

ZComment verier que deux evenements sont independants pour une probabilite?

SoientAetBdeux evenements d'un univers

etPune probabilite sur 1. D eterminerl' evenementrepr esentepar A\Bet calculerP(A\B). 2.

Calculer P(A)P(B).

Les deux evenements sont independants si et seulement siP(A\B) =P(A)P(B). ZComment calculer la probabilite d'une conjonction de deux evenements?

SoientAetBdeux evenements d'un univers

etPune probabilite sur . On cherche a calculerP(A\B). On sait queAetBsont independants pour la probabiliteP. Utiliser la formule :

P(A\B) =P(A)P(B):

On ignore siAetBsont independants pour la probabiliteP, alors : siP(A)6= 0 etP(B=A) est connue, utiliser la formule :

P(A\B) =P(A)P(B=A):

siP(B)6= 0 etP(A=B) est connue, utiliser la formule :

P(A\B) =P(B)P(A=B):

siP(A[B) est connue, utiliser la formule :

P(A\B) =P(A) +P(B)P(A[B):

siP(A\B) ouP(A[B) ouP(A\B) sont connues, exprimerA\Ben fonction deA\BouA[BouA\Bet utiliser les formules de probabilite classique. Par exemple on obtient les expressions suivantes :

P(A\B) = 1P(A\B)

P(A\B) = 1P(A[B)

P(A\B) = 1P(A)P(B) +P(A\B)

sinon, essayer de trouver un evenementEde probabilite connue, incompatible avecA\B, tel que (A\B)[Eforme un evenement de probabilite connue, et utiliser la formuleP(A\B) =P((A\B)[

E)P(E).

1quotesdbs_dbs48.pdfusesText_48