[PDF] Chapitre IV Bases et dimension d’un espace vectoriel



Previous PDF Next PDF







Chapitre IV Bases et dimension d’un espace vectoriel

II – Dimension d’un espace vectoriel On arrive à la notion la plus importante du cours d’algèbre de cette année 1 Définitions Théorème fondamental : dimension et cardinal des bases Soit un espace vectoriel ≠{⃗ r } et engendré par vecteurs Alors toutes les bases de possèdent le même nombre d’éléments



Ch2 : Les espaces vectoriels - Pr Hakima Mouanis

4 3 Base d’un espace vectoriel 5 Espace de dimension fini 6 Théorème de la base incomplète 6 1 Théorème de la base incomplète



1 Montrer qu’un espace est (ou n’est pas) un espace vectoriel

famille de l’espace des matrices sym´etriques carr ´ees de taille 2 Correction Si l’on sait que la dimension de cet espace est trois, il suffit de montrer que le systeme est libre ` Exercice 9Soit F = { a b c 0 d e 0 0 f : a,b,c,d,e,f r´eels } Montrer que F est un espace vectoriel, en trouver une base et la dimension



Espaces vectoriels

La plupart du temps, pour montrer qu'un ensemble F est un espace vectoriel,on montre que c'est un sous-espace vectoriel d'un espace vectoriel de référence Epar la caractérisation précédente: 1 On pose Eet on rappelle que c'est un espace vectoriel de référence 2 On montre que FˆE 3 On montre que 0 E2F





Exercices 11 Espaces vectoriels et applications linéaires

18 Sur le nombre de supplémentaires d’un sous-espace vectoriel non trivial ♪ Soit E un K-espace vectoriel de dimension finie n ˚2 On considère un sous-espace vectoriel F de dimen-sion p, avec 0 ˙p ˙n et G un supplémentaire de F 1)Soit a 2F et (ei)i2‡1,r une base de G a)Montrer que la famille (a ¯ei)i2‡1,r est libre



Cours 02 : Espaces Vectoriels Normés

Cours 02 : Espaces Vectoriels Normés 1 Cours 02 : Espaces Vectoriels Normés Dans tout ce chapitre, K sera le corps Rou C, et E sera un espace vectoriel sur K Nous allons chercher ici à transférer dans le cadre des espaces vectoriels la notion de limite



COLLE 22 Mathématiques

Dans un espace vectoriel E z ^0 E` et de dimension finie, toutes les bases ont le même nombre d’éléments Soit E un K - espace vectoriel de dimension n (n entier naturel non nul) Soit S une famille finie de vecteurs de E Les propositions suivantes sont équivalentes : a) S est une base de E b) S est une famille génératrice de E et



FORMES LINÉAIRES ET HYPERPLANS

Proposition - définition 4 Soit Eun espace vectoriel de dimension net de base B= fe 1;:::;e ng; les formes linéaires coordonnées e i ( ou dx i) pour i= 1 à n, forment une base B de E appelée la base duale de B La base Best appelée la base anti duale ou pré duale de B Corollaire 5 dimE = dimE Démonstration



Le PRODUIT VECTORIEL - AlloSchool

Soit un point dans l’espace ; ils existent deux points dans l’espace et tels que : u AB et ,les points , et étant non alignés, ils définissent un plan ( ) dans l’espace (ℰ) Le produit vectoriel des deux vecteurs et est le vecteur w AD tel ) ⊥( ) La base AB AC AD;; est directe

[PDF] montrer qu'une famille est une base

[PDF] forme quadratique exo7

[PDF] forme quadratique cours

[PDF] forme bilinéaire et forme quadratique

[PDF] forme quadratique exercice corrigé

[PDF] forme bilinéaire symétrique définie positive

[PDF] forme quadratique matrice

[PDF] montrer que q est une forme quadratique

[PDF] dessin industriel cours pdf

[PDF] coupes et sections dessin technique exercices corrigés

[PDF] bases du dessin technique pdf

[PDF] dessin technique

[PDF] cours et exercices avec solutions

[PDF] dessin technique exercices corrigés pdf

[PDF] cours de dessin technique mécanique pdf

1 Cours de M.RUMIN réécrit par J.KULCSAR

Chapitre IV

vectoriel Objectif : Nous allons voir comment fabriquer des systèmes de coordonnées pour les vecteurs

Dans ce chapitre ܧ

I Familles libres, génératrices, bases

1. Définitions

Définition de famille libre, liée, indépendance linéaire - Dans le cas contraire, on dit que la famille est libre.

Définition de famille génératrice

Définition de base

Une famille ࣠ de ܧ est une base de ܧ si et seulement si ࣠ est libre et génératrice de ܧ

2. Bases et coordonnées

Démonstration :

2 Cours de M.RUMIN réécrit par J.KULCSAR

Soit ݒԦܧא

3. Exemples

composantes ݔ௜ de ݒԦ. Attention, cela ne se produit que dans cette base particulière.

Par exemple, deux vecteurs non colinéaires de Թ௡ forment une base du plan engendré par ces

deux vecteurs.

3 Cours de M.RUMIN réécrit par J.KULCSAR

- Թ૜ défini par une équation vecteurs ne sont pas colinéaires, ils forment une famille libre et génératrice de ܲ

Remarque

vecteurs de manière optimale-à-dire en utilisant le minimum de paramètres. Ici, le et pas 100 ! déterminé par ݊൅ͳ coefficients. - Une famille de 3 vecteurs de Թ૜ (cf. cours)

4. La ndimension finie

Problème : Construire des bases dans le cas des espaces vectoriels de dimension finie. Définition : ܧ est de dimension finie si ܧ génératrice finie.

4 Cours de M.RUMIN réécrit par J.KULCSAR

5. Propriétés clés

Les propriétés suivantes seront utilisées très souvent dans les preuves et les exercices.

Propriété 1 : Soit ࣠ une famille libre de ܧ. Alors la famille ࣠ᇱൌ࣠׫

et seulement si ݒԦܸב݁ܿ Propriété 2 : Soit ࣠ une famille génératrice de ܧ Alors ࣠ est liée si et seulement si il existe un vecteur ݒԦא

génératrice. Autrement dit, si et seulement si ׌ݒԦא࣠ tel que ݒԦܸא݁ܿ

כSi ߣ non tous nuls. כ Si ߣ ଴ tel que ߣ

5 Cours de M.RUMIN réécrit par J.KULCSAR

ce qui est en fait un élément de ܸ݁ܿ

6. Deux méthodes de construction de bases

Théorème d

espace vectoriel de dimension finie). Démonstration : Algorithme avec la propriété 2 :

Théorème de la base incomplète

Soit ܧ

famille génératrice de ܧ. Il faut compléter ࣠ en une base de ܧ de la propriété 1 :

՜Si oui, on garde ࣠.

כ On recommence pour tous les autres vecteurs de ܩ

Ce qui veut dire que ࣠௡ est libre et génératrice de ܧ, -à-dire est une base de ܧ

Exemple : Plan vectoriel. Cf. cours.

6 Cours de M.RUMIN réécrit par J.KULCSAR

II algèbre de cette année !

1. Définitions

Théorème fondamental : dimension et cardinal des bases

Soit ܧ

Alors toutes les bases de ܧ

dimension de ܧ et se note ܧ. On a de plus ܧ

Exemples :

- Les espaces vectoriels de dimension ͳ sont les droites vectorielles. Les espaces vectoriels de dimension ʹ sont les plans vectoriels, etc.

Intuitivement, on peut dire que la dimension ܧ

dont dépend un vecteur de ܧ : ԹଷǡԹସ ou Թଵ଴଴.

Lemme clé

Soit ܧ un espace vectoriel engendré par ݊ vecteurs. Alors toute famille libre de ܧ cardinal inférieur ou égal à ݊.

Lemme clé ֜

Démonstration du lemme : On procède par récurrence sur ݊. va montrer que ݌൐݊ implique que ࣠ est liée.

՜ Si ߣ

7 Cours de M.RUMIN réécrit par J.KULCSAR

՜ Si ߣ

On regarde le cas ܧ engendré par ݊ vecteurs : ܧൌܸ݁ܿ

On a donc ܧൌܧ

(S) ൝

݊െͳ vecteurs. Comme ܽܿ

(i.e. toute famille libre de E est de cardinal inférieur ou égal à ݊െͳ).

՜ Sinon, il existe au moins un ߣ௜ ߣ

ఒభ. On jecte dans les lignes suivantes du système (S). On trouve que

2. Conséquences importantes

Théorème

Soit ܧ

est une base de ܧ

ii) Toute famille génératrice de ܧ a au moins ܧ éléments. Si une famille génératrice de ܧ

a exactement ܧ ܧ

Corollaire utile

࣠ de ܧ

8 Cours de M.RUMIN réécrit par J.KULCSAR

Problème : montrer que ࣠ est génératrice. Soit ݒԦ un vecteur quelconque de ܧ. La famille ࣠׫ . On a donc, par la propriété clé 1, ݒԦܸא݁ܿ

࣠ est donc génératrice (de tout ݒԦܧא). ࣠ étant génératrice de ܧ ܧ

Démonstration ii) : Soit ࣠ une famille génératrice de ܧ avec ܧ : ࣠ génératrice avec ܧ sinon on peut extraire une sous famille qui est une base de ܧ

Propriété de la croissance de la dimension

Soit ܧ un ev de dim finie et ܨ un sev de ܧ i) ܨ de dimension finie et ܨ൑ܧ ii) Si de plus ܨൌܧ alors ܨൌܧ - Il y a une in : les droites vectorielles. - Il y a une in : les plans vectoriels. - on 3 : Թଷ lui-même.

Démonstration i) :

- Si ܨ automatiquement ݌൑ܧ

݊). Montrons que ܮ est une base de ܨ

Soit ݒԦܨא quelconque. On considère ܮᇱൌ׫ܮ

3. Rang des systèmes de vecteurs

9 Cours de M.RUMIN réécrit par J.KULCSAR

dimension de ܸ݁ܿ Attention de ne pas confondre le rang et le ! Le cardinal est une notion plus abstraite basée sur la dimension.

Proposition :

Démonstration i) : ܸ݁ܿ

࣠ est donc une base de ܸ݁ܿ Problème : Donner le rang de ࣠ en fonction de ܽ - Si ܽ libre et à 3 éléments. - Si ܽ

10 Cours de M.RUMIN réécrit par J.KULCSAR

III utilité des notions abstraite

vectoriel, de base et de dimension

1. Le problème

cherche une fonction ݂ aussi simple et régulière que possible dont le graphe passe par ces -à-dire telle que

On cherche une fonction interpolatrice ܲ

possible. Analyse : Le problème est linéaire par rapport à ܲ

Si on a ൝

et ൝ et אߣ

Alors ൝

11 Cours de M.RUMIN réécrit par J.KULCSAR

Synthèse : On pose

On a une solution du problème général en posant interpolateur de Lagrange. On a Théorème 1 : unique polynôme de degré inférieur ou égal à

Soit ܧ

Démonstration du TH1 en utilisant le TH2 :

faut montrer que ܲ ge.

Démonstration du TH2 :

libre.

12 Cours de M.RUMIN réécrit par J.KULCSAR

Soient ߣ଴ǡߣଵǡǥǡߣ௡ିଵ tels que ߣ଴ܲ଴൅ߣଵܲଵ൅ڮ൅ߣ௡ିଵܲ

Alors, ׊ݔאԹǡߣ଴൅ߣଵݔ൅ڮ൅ߣ Ce qui montre que ߣ଴ൌߣଵൌڮൌߣ

On a donc ܧ

On pose ܧൌᇱ. ܧ

Vérifions. On a pour tout ݊א

Un exemple célèbre : ܽൌܾൌͳ֜ Problème : On veut les formules explicites ֜ Idée : On cherche des suites solution sous la forme ݑ௡ൌݎ௡ avec ݎא caractéristique. - Si ߂ - Si ߂ en exo).

13 Cours de M.RUMIN réécrit par J.KULCSAR

Théorème

tout ݊אԳ, on ait ݑ௡ൌߣଵݎଵ௡൅ߣ Conditions nécessaires : ൜ߣଵ൅ߣ

E est n espace vectoriel, il est donc stable par la loi +) avec ݓ଴ൌͲ et ݓଵൌͲ.

La preuve pour le cas ߂

On doit donc avoir ݑ௡ൌߣ

avec ൝

On trouve ݑ௡ൌଵ

(est un entier !)

Pour n assez grand, ݑ௡ ଵ

On peut donner la croissance de la suite de Fibonacci. On a :

՜ ». Elle représentait alors

une " proportion parfaite » (voir Wikipédia pour plus ).

14 Cours de M.RUMIN réécrit par J.KULCSAR

IV Supplémentaire, somme directe

1. Définitions

ܨ൅ܩ de deux sous espaces vectoriels de ܧ Définitions de somme directe et de supplémentaire

1) On dit que deux sous espaces vectoriels ܨ et ܩ de ܧ

ݒԦൌݔԦ൅ݕԦ avec ݔԦܨאݕԦܩא

2) Dans ce cas, on dit que ܩ est un supplémentaire de ܨ dans ܧ. On le note ܧൌܩْܨ

Premier exemple dans Թ૛:

Proposition : On a ܧൌ֞ܩْܨ൜ܧൌܨ൅ܩ

Démonstration :

(֜) : On suppose ܧൌܧ֜ܩْܨൌܨ൅ܩ. Soit ݒԦܩתܨא

Alors il existe forcément ݔԦܨאǡݕԦܩא décomposition ?

2. Constructions et critères

Théorème

Tout sous espace vectoriel ܧ ܨ

supplémentaire dans ܧ F G

15 Cours de M.RUMIN réécrit par J.KULCSAR

Démonstration :

Remarque importante sur la preuve

Cette démonstration montre comment fabriquer des supplémentaires : en complétant une base de ܧ ܨ. En particulier, tout sev ܨ de Թ௡ possède un supplémentaire ܩ

particulièrement simple : engendrés par certains vecteurs de la base canonique de Թ௡, i.e. du

type ܩൌܸ݁ܿ

Par exemple, tout plan ܲ

à la fois !

Théorème : critère de somme directe

Soit ܧ un espace vectoriel de dimension finie, ܨ et ܩ deux sous espaces vectoriels de ܧ

Lemme : Soient ܨ et ܧ ܩ

F G

16 Cours de M.RUMIN réécrit par J.KULCSAR

Démonstration du : Caractérisation de ܧൌܩْܨ

On a ܧൌܩْܨ

Démonstration du lemme :

- 1er point à faire en exercice.

Exemples :

- Dans Թଷ : une droite ܦ et un plan ܲ sont en somme directe ssi ܦתܲ sont supplémentaires dans Թସ.

3. La formule de Grassmann

Pour conclure, on

17 Cours de M.RUMIN réécrit par J.KULCSAR

Théorème de Grassmann :

Soient ܨ et ܩ deux sous espaces vectoriels de ܧ Illustration : Si ܨ൅ܩ൐ܧ alors ܩתܨ

Exemples :

- Deux plans vectoriels de Թଷ se coupent toujours au moins suivant une droite : facile - Deux sous-espaces de dimension 3 dans Թସ contiennent au moins un plan : moins facile à voir !

Démonstration géométrique :

Soit ܸ un supplémentaire de ܩתܨ dans ܩ

On montre que ܨ൅ܩൌْܸܨ

- Soit ݒԦܸתܨא. Alors ݒԦܩתܨא car ܩؿܸ

On a donc ܨ൅ܩൌْܸܨ

F G O Vquotesdbs_dbs22.pdfusesText_28