[PDF] PRODUIT SCALAIRE - maths et tiques



Previous PDF Next PDF







NOM : PRODUIT SCALAIRE 1ère S

NOM : PRODUIT SCALAIRE 1ère S Exercice 14 Soit le triangle ABCet Kle projeté orthogonal de Asur [BC] On donne : AB= 6, BK= 4 et KC= 7 1) Iest le milieu de [BC] et Gest le centre de gravité du triangle ABC



Produit scalaire, cours, première S - Free

Produit scalaire, cours, première S F Gaudon 2 mai 2016 Table des matières 1 Norme d'un vecteur2 2 Produit scalaire 2 3 Orthogonalité de vecteurs4 4 Produit scalaire et projection orthogonale4 5 Propriétés algébriques sur les produits scalaires5 1



PRODUIT SCALAIRE - maths et tiques

PRODUIT SCALAIRE La notion de produit scalaire est apparue pour les besoins de la physique Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877), ci-contre Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853 I Définition et



PRODUIT SCALAIRE - SYNTHÈSE EN PREMIÈRE S

PRODUIT SCALAIRE - SYNTHÈSE EN PREMIÈRE S Définitions et propriétés : Soient~uet~v deux vecteurs du plan, repéré par 0 ; ~i ,~j orthonormé Le produit scalaire de ~u(x ; y)et de ~v(x′; y′)est un nombre (un scalaire) défini par l’une des assertions



350re S - Produit scalaire - ChingAtome

PremièreS/Produitscalaire 1 Introduction : Exercice 6647 Dans le plan muni d’un repère (O;I;J orthonormé -3 -2 -1 2 3 4 5I-1 2 3 4 5 J O On considère les points



1 Normed’unvecteur

Chapitre: Produit Scalaire Première S Propriétés3 •Une droite de vecteur normal #»n(a;b) admet une équationcartésiennede la forme ax+by +c =0 où c estunnombreréelà déterminer •Réciproquement, la droite d’équation cartésienne ax +by +c =0 admet le vecteur #»n(a;b) comme vecteurnormal



350re S - Produit scalaire - ChingAtome

2 Coordonnées et produit scalaire : Exercice 3018 Dans le plan muni d’un repère orthonormé (O; i; j), on considère les deux vecteurs u(x;y) et v (x′;y′) Le produit scalaire des vecteurs



Première S - Propriétés de calcul du produit scalaire

Première S - Propriétés de calcul du produit scalaire - Projeté orthogonal Author: Clara Parfenoff - Alain Solean - Alexis Museux Subject: Première S - Propriétés de calcul du produit scalaire - Projeté orthogonal Created Date: 4/29/2012 5:32:06 PM



Le produit scalaire - Maths Exercices

Définition du produit scalaire de deux vecteurs Définition 6 Le produit scalaire de deux vecteurs u et v, noté u v , est le nombre réel défini par : u V = Hull Il V Il cos (u, V), si u et v sont non nuls ; e u v = 0, si u=00u v = 0 On appelle carré scalaire de u le nombre = llu 112 REMARQUES :



Exercices sur le produit scalaire

Premiere` S Exercices sur le produit scalaire Exercice 1 : Sur les expressions du produit scalaire Pour les sept figures suivantes, calculer AB AC Exercice 2 : Sur les expressions du produit scalaire Sur la figure ci-contre, on a tracé deux cercles de centre O et de rayons respectifs 2 et 3 1)Calculer les produits scalaires suivants

[PDF] Produit scalaire 1ere s

[PDF] produit scalaire 1ere s controle

[PDF] produit scalaire 1ere s cours

[PDF] produit scalaire 1ere s exercices corrigés pdf

[PDF] produit scalaire 2

[PDF] produit scalaire 3

[PDF] Produit Scalaire : " Une équivalence "

[PDF] PRODUIT SCALAIRE : démonstration dans un repére

[PDF] Produit scalaire : Géométrie scalaire

[PDF] Produit scalaire ; Barycentre et Vecteurs

[PDF] Produit scalaire avec équations

[PDF] produit scalaire avec norme et angles

[PDF] produit scalaire coordonnées

[PDF] produit scalaire cours

[PDF] produit scalaire cours pdf

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frPRODUIT SCALAIRE La notion de produit scalaire est apparue pour les besoins de la physique. Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877), ci-contre. Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853. I. Définition et propriétés 1) Norme d'un vecteur Définition : Soit un vecteur

u et deux points A et B tels que u =AB . La norme du vecteur u , notée u , est la distance AB. 2) Définition du produit scalaire Définition : Soit u et v deux vecteurs du plan. On appelle produit scalaire de u par v , noté u .v , le nombre réel définit par : - u .v =0 , si l'un des deux vecteurs u et v est nul - u .v =u ×v

×cosu

;v , dans le cas contraire. u .v se lit " u scalaire v ". Remarque : Si AB et AC sont deux représentants des vecteurs non nuls u et v alors : u .v =AB .AC =AB

×AC

×cosBAC

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frExemple : Vidéo https://youtu.be/CJxwKG4mvWs Soit un triangle équilatéral ABC de côté a.

AB .AC =AB

×AC

×cosBAC

=a×a×cos60° =a 2

×0,5

a 2 2 Attention : Le produit scalaire de deux vecteurs est un nombre réel. Ecrire par exemple u .v =0

est une maladresse à éviter ! 3) Propriété de symétrie du produit scalaire Propriété : Pour tout vecteur

u et v , on a : u .v =v .u

Démonstration : On suppose que

u et v sont non nuls (démonstration évidente dans la cas contraire). u .v =u ×v

×cosu

;v =v ×u

×cosu

;v =v ×u

×cos-v

;u =v ×u

×cosv

;u =v .u

4) Opérations sur les produits scalaires Propriétés : Pour tous vecteurs

u v et w , on a : 1) u .v +w =u .v +u .w 2) u .kv =ku .v , avec k un nombre réel. - Admis -

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 5) Identités remarquables Propriétés : Pour tous vecteurs

u et v , on a : 1) u +v 2 =u 2 +2u .v +v 2 2) u -v 2 =u 2 -2u .v +v 2 3) u +v u -v =u 2 -v 2

Démonstration pour le 2) :

u -v 2 =u -v u -v =u .u -u .v -v .u +v .v =u 2 -2u .v +v 2

II. Produit scalaire et norme Soit un vecteur

u , on a : u .u =u ×u

×cosu

;u =u 2

×cos0=u

2 et u .u =u 2

On a ainsi :

u 2 =u .u =u 2

Propriété : Soit

u et v deux vecteurs. On a : u .v 1 2 u 2 +v 2 -u -v 2 et u .v 1 2 u +v 2 -u 2 -v 2

Démonstration de la première formule :

u -v 2 =u -v 2 =u 2 -2u .v +v 2 =u 2 -2u .v +v 2 donc u .v 1 2 u 2 +v 2 -u -v 2

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frPropriété : Soit A, B et C trois points du plan. On a :

AB .AC 1 2 AB 2 +AC 2 -BC 2

Démonstration :

AB .AC 1 2 AB 2 +AC 2 -AB -AC 2 1 2 AB 2 +AC 2 -CB 2 1 2 AB 2 +AC 2 -BC 2

Exemple : Vidéo https://youtu.be/GHPvfaHnysg

CG .CF 1 2 CG 2 +CF 2 -GF 2 1 2 6 2 +7 2 -3 2 =38 III. Produit scalaire et orthogonalité 1) Vecteurs orthogonaux Propriété : Les vecteurs u et v sont orthogonaux si et seulement si u .v =0

. Démonstration : Si l'un des vecteurs est nul, la démonstration est évidente. Supposons le contraire.

u .v =0 ⇔u ×v

×cosu

;v =0 ⇔cosu ;v =0

Les vecteurs

u et v sont orthogonaux

5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 2) Projection orthogonale Définition : Soit une droite d et un point M du plan. Le projeté orthogonal du point M sur la droite d est le point d'intersection H de la droite d avec la perpendiculaire à d passant par M. Propriété : Soit

u et v deux vecteurs non nuls du plan tels que u =OA et v =OB . H est le projeté orthogonal du point B sur la droite (OA). On a : u .v =OA .OB =OA .OH

Démonstration :

OA .OB =OA .OH +HB =OA .OH +OA .HB =OA .OH

En effet, les vecteurs

OA et HB sont orthogonaux donc OA .HB =0 . Exemple : Vidéo https://youtu.be/2eTsaa2vVnI Soit un carré ABCD de côté c. AB .AC =AB .AB =AB 2 =c 2 IV. Produit scalaire dans un repère orthonormé Le plan est muni d'un repère orthonormé O;i ;j . Propriété : Soit u et v deux vecteurs de coordonnées respectives x;y et x';y' . On a : u .v =xx'+yy' . Démonstration : u .v =xi +yj .x'i +y'j =xx'i .i +xy'i .j +yx'j .i +yy'j .j =xx'i 2 +xy'i .j +yx'j .i +yy'j 2 =xx'+yy' car i =j =1 , le repère étant normé, et i .j =j .i =0

le repère étant orthogonal. Exemple : Vidéo https://youtu.be/aOLRbG0IibY Vidéo https://youtu.be/cTtV4DsoMLQ Soit

u 5;-4 et v -3;7 deux vecteurs. u .v =5×-3quotesdbs_dbs48.pdfusesText_48