[PDF] § 3 Produit vectoriel - delezename



Previous PDF Next PDF







Produit scalaire en dimension 3 Norme dun vecteur en dim 2

Produit scalaire de deux vecteurs en dim 3 Par rapport à une base orthonormée, considérons les vecteurs u= u1 u2 u3,v= v1 v2 v3 Ces deux vecteurs de l'espace sont nécessairement dans un même plan



Géométrie vectorielle du plan et de l’espace Produit

3 Produit scalaire 12 3 1 Définition 12 3 2 Deuxième définition du produit scalaire euclidien de R3 13 4 Produit vectoriel, produit mixte dans R3 15 4 1 Vecteur directeur d’un plan, produit vectoriel dans R3 15 4 2 Le déterminant et le produit vectoriel 16 4 3 Le produit mixte dans R3 17 5 Equations des plans et droites dans R3





Devoir surveillé : produits scalaires

Nom & Prénom : www dimension-k com Devoir surveillé : produits scalaires



Produit vectoriel et déterminant dans l’espace

Propriétés du produit vectoriel de deux vecteurs de l’espace Bien prendre garde, que contrairement au produit scalaire, qui d’ailleurs est un nomre et pas un ve teur, le produit vetoriel n’est pas ommutatif En effet, hanger l’ordre des veteurs, hange le signe du produit : - Bilinéarité



§ 3 Produit vectoriel - delezename

L'expression analytique du produit vectoriel possède les 5 propriétés du § 3 1 Ces vérifications sont laissées au soin du lecteur L'expression analytique du produit vectoriel vérifie la définition géométrique Direction c fi ×a fi = a2b3-a3b2 a3b1-a1b3 a1b2-a2b1 × a1 a2 a3 =Ha2b3-a3b2L a1+Ha3b1-a1b3L a2+Ha1b2-a2b1L a3=



Matrices de Hadamard - Lev-Arcady

Le calcul du produit scalaire de deux colonnes fait appel à n tours de boucle, chacun s'e ectuant à coût constant; son coût est donc en ( n ) Le calcul du produit d'une matrice par sa transposée fait appel au) 2 +

[PDF] Produit scalaire, théorème

[PDF] Produit Scalaire- Droite d'Euler d'un Triangle

[PDF] Produit scalaire/ dernier chance

[PDF] produit vectoriel

[PDF] produit vectoriel 2 dimensions

[PDF] produit vectoriel 2d

[PDF] produit vectoriel 3 vecteurs

[PDF] produit vectoriel cours

[PDF] produit vectoriel dans l'espace

[PDF] produit vectoriel dans le plan

[PDF] produit vectoriel de deux vecteur

[PDF] produit vectoriel de deux vecteurs

[PDF] produit vectoriel de deux vecteurs dans l'espace

[PDF] produit vectoriel et determinant

[PDF] produit vectoriel exercices corrigés

3-ème année, mathématiques niveau avancé

Edition 2004-2005

§ 3 Produit vectoriel

ŸLiens hypertextes

Produit scalaire 3D:

Supports de cours de mathématiques, niveau secondaire II (page mère):

3.1 Construction

ŸDéfinition géométrique du produit vectoriel de deux vecteurs

Etant donné deux vecteurs a®

, b® , on appelle produit vectoriel des vecteurs a® , b® le vecteur c® , noté c® =a®

´b®

, défini de la manière suivante: dans le cas où a® , b® ne sont pas colinéaires, la direction de c® est définie par c®

¦a®

et c®

¦b®

le sens de c® est tel que que le triplet a® ,b® ,c® est direct, c'est-à-dire obéit à la règle de la main droite; la norme de c® est égale à l'aire du parallélogramme sous-tendu par a® ,b® , c'est-à-dire

þc®

þ=þa®

´b®

þ=þa®

þ×h=þa®

þ×þb®

þ×ýsinHjLý où j=a®

,b® a® b®c®jh dans le cas où a® , b® sont colinéaires, on a a® =0® ,b® =0® ousinHjL=0; c'est pourquoi on pose c® =a®

´b®

=0®

ProduitVectoriel-Determinant.nb15

ŸPropriétés

Première propriété

Il découle de la définition que, pour tout vecteur a® , on a a®´a®=0®

Deuxième propriété

´a®=-Ka®´b®

O HantisymétrieL

a® b a® ´b a® b b

´a®

Troisième propriété

Pour toute base orthonormée directe i®

,j® ,k® , on a i®

´j®

=k® ,j®

´k®

=i® ,k®

´i®

=j®

HrègledespermutationscycliquesL

i® j® k® En combinant les propriétés 2 et 3, on obtient j®

´i®

=-k® ,k®

´j®

=-i® ,i®

´k®

=-j®

ProduitVectoriel-Determinant.nb16

Quatrième propriété

Jl×a®N´b®

=l×Ka®´b® O

Dans le cas où l>0, la direction et le sens des deux expressions précédentes sont les mêmes; pour la norme, lorsqu'on

multiplie le côté a® par l, l'aire du parallélogramme est multilpliée par l (dans la figure, l=1.6): a® b® a®´b®l×a® l×a®´b®

Lorsque l<0, les sens des deux membres sont inversés; en effet, pour le membre de gauche, si a®

,b® ,c® est direct, c'est alors -a® ,b® ,-c® qui est direct (dans la figure, l=-1.6): a® b® a®´b®l×a® l×a®´b®

D'une manière analogue, on montre que

a®´Km×b®

O=m×Ka®´b®

O

ProduitVectoriel-Determinant.nb17

Cinquième propriété

Ja1+a2N´b®

=a1´b® +a2´b® a®´Kb1+b2O=a®´b1+a®´b2 Démontrons la propriété dans le cas particulier où les vecteurs a1 ,a2,b® sont coplanaires. a1a2a1+a2b®h1h2h1+h2i® j®

Dans une base orthonormée directe i®

,j® ,k® dont les deux premiers vecteurs sont dans le plan de la figure, les produits vectoriels sont des multiples de k® . Pour le cas de figure représenté,

þa1´b®

+a2´b® 0 0

þa1´b®

0 0

þa2´b®

þ=þa1´b®

þ+þa2´b®

h1×þb®

þ+h2×þb®

þ=Hh1+h2L×þb®

þ=þJa1+a2N´b®

Il y a d'autres cas de figures à envisager: il est possible que les deux aires doivent se soustraire, mais la démonstration

demeure semblable.

Quant au cas où les trois vecteurs ne sont pas coplanaires, nous renonçons à donner une démonstration, mais nous

effectuerons des vérifications au § 3.2. On regroupe les propriétés 4 et 5 en disant que le produit vectoriel est bilinéaire.

ProduitVectoriel-Determinant.nb18

ŸExpression analytique du produit vectoriel (ou définition algébrique du produit vectoriel)

En utilisant les propriétés précédentes, nous pouvons exprimer le produit vectoriel en composantes dans une base

orthonormée directe i® ,j® ,k® . Pour a®=a1i® +a2j® +a3k® a1 a2 a3 ;b® =b1i® +b2j® +b3k® b1 b2 b3 on a a®´b® =Ka1i® +a2j® +a3k®

O´Kb1i®

+b2j® +b3k® O= a1b1i®

´i®

+a1b2i®

´j®

+a1b3i®

´k®

+a2b1j®

´i®

a2b2j®

´j®

+a2b3j®

´k®

+a3b1k®

´i®

+a3b2k®

´j®

+a3b3k®

´k®

0® +a1b2k® +a1b3 K-j®

O+a2b1K-k®

O+0®

+a2b3i® +a3b1j® +a3b2K-i®quotesdbs_dbs48.pdfusesText_48