[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES



Previous PDF Next PDF







I-/ On considère la suite (U ∀x∊ℕ ∊ℕ

I-/ On considère la suite (U n) définie par : ∀x∊ℕ = + + = + 2 3 1 1 0 U U n U n n 1°) Préciser le sens de variation de la suite (U n) 2°) Démontrer que ∀x∊ℕ , U n >n2 ; en déduire la limite de la suite (U n) 3°) Conjecturer une expression de U n en fonction de n puis démontrer la propriété ainsi conjecturée



On considère la suite ( )

On considère la suite ( ) n n U définie par : 0 1 6 8 7 n n7 7 U etU U + = = + 1) montrer que ( ) 8 n ∀ ∈



WordPresscom

On considère la suite (tin) définie par : : V n E net i) a) Déterminer tes deux nombres réets a et b tel que pour tout entier naturel n ; b) Montrerpar récurrence que —2 < un < I V n E N 2) a' Véri(ier que pout tout n N; — b) En déduire que la suite (tan) est croissante et qu'elle est convergente



On considère la suite définie sur par

Exercice n°: On considère la suite u n définie sur par : 0 un n 1 n u1 u u e 1 a Montrer par récurrence que, pour tout entier naturel n, u0 n f b Déterminer le sens de variation de la suite c La suite est-elle convergente ? Si oui, déterminer sa limite 2 On considère la suite w n définie sur par : w ln u nn a



Suites numériques et programmation en Python Exercice 1

Suites numériques et programmation en Python Exercice 1 : On considère la suite arithmétique définie par : 0 1 2 n n 4 u uu ­° ® °¯ 1) Réaliser un programme Python afin de calculer la valeur d’un rang n saisi par l’utilisateur



Antilles-Guyane septembre 2019 - Meilleur en Maths

On considère une suite (wn) qui vérifie, pour tout entier naturel n, n 2⩽(n+1)2w n⩽n 2+n Affirmation 3 : La suite (wn) converge Partie B On considère la suite (Un) définie par U0= 1 2 et, pour tout entier naturel n, Un+1= 2Un 1+Un 1 Calculer U1 que l’on écrira sous la forme d’une fraction irréductible 2



exercices suites - bagbouton

On se propose d’étudier la suite un , définie par la donnée de u0 0 et par la relation, valable pour tout entier naturel n: un+1 = 2 1 2 un + 1) a) Montrer que, pour tout entier naturel n, on a : 0 £ un £ 1 b) Étudier les variations de la suite (un) c) Déduire des questions précédentes que la suite (un) converge et donner sa limite



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Les points de la représentation graphique d'une suite arithmétique sont alignés Exemple : On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4



LES SUITES (Partie 1) - Maths & tiques

Exemple : La suite (u n) définie sur ℕ* par "=1+ $ "F a pour limite 1 En effet, les termes de la suite se resserrent autour de 1 à partir d'un certain rang Si on prend un intervalle ouvert quelconque contenant 1, tous les termes de la suite appartiennent à cet intervalle à partir d'un certain rang Définition : On dit que la suite (u

[PDF] un+1=3un-2n+3

[PDF] démontrer par récurrence que pour tout entier naturel n un 1 a le même signe que (- 1 n

[PDF] on considere la suite un definie par u0 2 et un 1 un 2 2un 1

[PDF] exprimer vn puis un en fonction de n

[PDF] trouver un a partir de un+1

[PDF] comment démontrer qu'une suite est géométrique

[PDF] asie 2013 maths

[PDF] on souhaite ecrire un algorithme affichant pour un entier naturel n non nul donné

[PDF] on considere la suite (un) definie par u0=1 et pour tout entier naturel n un+1=racine 2un

[PDF] but d une critique de film

[PDF] écrire une critique de livre

[PDF] joachim doit traverser une riviere

[PDF] julie a fait fonctionner ce programme en choisissant le nombre 5

[PDF] on considère les fonctions f et g définies sur l'intervalle 0 16

[PDF] on considère la fonction g définie sur l intervalle 0

1

SUITES ARITHMETIQUES

ET SUITES GEOMETRIQUES

I. Suites arithmétiques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u 0 = 3, u 1 = 8, u 2 = 13, u 3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.

La suite est donc définie par : .

Définition : Une suite (u

n ) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : .

Le nombre r est appelé raison de la suite.

Méthode : Démontrer si une suite est arithmétique

Vidéo https://youtu.be/YCokWYcBBOk

1) La suite (u

n ) définie par : est-elle arithmétique ?

2) La suite (v

n ) définie par : est-elle arithmétique ? 1) . La différence entre un terme et son précédent reste constante et égale à -9. (u n ) est une suite arithmétique de raison -9. 2) . La différence entre un terme et son précédent ne reste pas constante. (v n ) n'est pas une suite arithmétique.

Vidéo https://youtu.be/6O0KhPMHvBA

0 1 3 5 nn u uu 1nn uur u n =7-9n v n =n 2 +3 1

7917 979 9799

nn uunn nn 2 222
1

1332 13 321

nn vvnnnnn n 2

Propriété : (u

n ) est une suite arithmétique de raison r et de premier terme u 0

Pour tout entier naturel n, on a : .

Démonstration :

La suite arithmétique (u

n ) de raison r et de premier terme u 0 vérifie la relation

En calculant les premiers termes :

Méthode : Déterminer la raison et le premier terme d'une suite arithmétique

Vidéo https://youtu.be/iEuoMgBblz4

Considérons la suite arithmétique (u

n ) tel que et .

1) Déterminer la raison et le premier terme de la suite (u

n

2) Exprimer u

n en fonction de n.

1) Les termes de la suite sont de la forme

Ainsi et

On soustrayant membre à membre, on obtient : donc .

Comme , on a : et donc : .

2) soit ou encore

2) Variations

Propriété : (u

n ) est une suite arithmétique de raison r. - Si r > 0 alors la suite (u n ) est croissante. - Si r < 0 alors la suite (u n ) est décroissante.

Démonstration : .

- Si r > 0 alors et la suite (u n ) est croissante. - Si r < 0 alors et la suite (u n ) est décroissante.

Exemple :

Vidéo https://youtu.be/R3sHNwOb02M

u n =u 0 +nr u n+1 =u n +r u 1 =u 0 +r 2100

2uururrur=+=++= +

3200

23uururrur=+=++= +

100
(1) nn uur unr ru nr u 5 =7 u 9 =19 u n =u 0 +nr 50

57uur=+=

90

919uur=+=

5r-9r=7-19

r=3 u 0 +5r=7 u 0 +5´3=7 u 0 =-8 0n uunr =+83 n un=-+´38 n un=- u n+1 -u n =u n +r-u n =r u n+1 -u n >0 u n+1 -u n <0 3

La suite arithmétique (u

n ) définie par est décroissante car de raison négative et égale à -4.

3) Représentation graphique

Les points de la représentation graphique d'une suite arithmétique sont alignés.

Exemple :

On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4.

RÉSUMÉ

(u n ) une suite arithmétique - de raison r - de premier terme u 0

Exemple :

et

Définition

La différence entre un terme et son

précédent est égale à -0,5.

Propriété

Variations

Si r > 0 : (u

n ) est croissante.

Si r < 0 : (u

n ) est décroissante.

La suite (u

n ) est décroissante.

Représentation

graphique

Remarque :

Les points de la représentation

graphique sont alignés. u n =5-4n

0,5r=-

0 4u= 1nn uur 1 0,5 nn uu 0n uunr =+40,5 n un=-

0,50r=-<

4

II. Suites géométriques

1) Définition

Exemple :

Considérons une suite numérique (u

n ) où le rapport entre un terme et son précédent reste constant et égale à 2. Si le premier terme est égal à 5, les premiers termes successifs sont : u 0 = 5, u 1 = 10, u 2 = 20, u 3 = 40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5.

La est donc définie par : .

Vidéo https://youtu.be/WTmdtbQpa0c

Définition : Une suite (u

n ) est une suite géométrique s'il existe un nombre q tel que pour tout entier n, on a : .

Le nombre q est appelé raison de la suite.

Méthode : Démontrer si une suite est géométrique

Vidéo https://youtu.be/YPbEHxuMaeQ

La suite (u

n ) définie par : est-elle géométrique ? Le rapport entre un terme et son précédent reste constant et égal à 5. (u n ) est une suite géométrique de raison 5 et de premier terme .

Exemple concret :

On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%.

Chaque année, le capital est multiplié par 1,04. Ce capital suit une progression géométrique de raison 1,04.

On a ainsi :

De manière générale : avec

On peut également exprimer u

n en fonction de n :

Propriété : (u

n ) est une suite géométrique de raison q et de premier terme u 0

Pour tout entier naturel n, on a : .

0 1 5 2 nn u uu 1nn uqu =´35 n n u=´ 11 1 1 355
55
355
quotesdbs_dbs42.pdfusesText_42