[PDF] Cardinalité



Previous PDF Next PDF







Cardinalité

Arrangement Arrangementdep élémentsparmin avecrépétition: Nombredelistesordonnéesdep élémentsparmin,maisons’autorisedes répétitionséventuellesdeséléments



Chapitre 2 Le calcul des probabilit s - Renaud Bourles

Distribution UniformeProbabilit e de LaplaceD enombrementsLes Paris Chapitre 2 Le calcul des probabilit es Renaud Bourl es - Ecole Centrale Marseille Math ematiques pour la nance



Probabilités - BAC DE FRANCAIS

Une probabilité en mathématique est un chiffre compris entre 0 et 1 Ce chiffre représente une évaluation du caractère probable d’un événement Si la probabilité de se produire d’un événement est 1, alors il se produira forcément Si cette probabilité est de 0, il ne se produira jamais Prenons un exemple simple et concret :



Calculs de probabilité

, calculer son cardinal 2 Quelle est la probabilité que le joueur obtienne un carré de roi? Exercice 14 8 On tire simultanément 3 boules dans une urne contenant 5 boules blanches et 10 boules noires Après avoir décrit l'univers considéré, donner la probabilité de l'événement A :"le tirage ne contient aucune boule blanche"



Dénombrement et probabilités

Calculer la probabilité de C Dans le jeu de cartes, il y a 8 cœurs et 24 cartes distinctes d'un cœur card C=(8 1)×(24 4)=8× 24 420 =85008 P(C)= 85008 201376 = 759 1798 ≈0,422 e) Soit D l'événement : on extrait une main de 5 cartes contenant au moins un cœur Calculer la probabilité de D



Introduction au Calcul des Probabilit´es

des temps d’attente On ne peut pas ´etudier avec un espace Ω de cardinal fini une exp´erience al´eatoire aussi simple que : « on lance un d´e jusqu’a la premi`ere obtention d’un six » Nous nous posons donc la question de la d´efinition et de l’´etude des probabilit´es sur des univers Ω infinis Il est possible au niveau du



Chapitre 10 : Probabilités

une probabilité Comme il est facile de calculer la probabilité d'un complémentaire et d'une union (voire plus loin dans ce cours les formules correspondantes), les conditions imposées sont en fait assez naturelles Quand Ω est ni, on prendra toujours T = P(Ω) car on sait calculer des probabilités pour tous les sous-ensembles



Ch 1 Ensembles et d´enombrement I Ensembles

cardinal n preuve : clair par le principe du d´enombrement ♣ exemple : combien existe-t-il d’anagrammes de PROBA? 5 Th´eor`eme 16 Soient n objets distinguables Le nombre de permutations de r objets, pris parmi les n objets, est Ar n = n (n − r) (on dit aussi arrangement de r objets pris parmi n)



Probabilit es - ac-nancy-metzfr

Calculer le nombre de facon de choisir simultan ement p el ements dans un ensemble E revient a d enombrer les combinaisons de p el ements de E, c’est a dire les sous-ensemble de E contenant p el ements (pas d’ordre) Il y a donc Cp n = n p fa˘cons de choisir simultan ement p el ements dans E, avec Cp n = n p = n p(n p) si p 6 n: Cp n



Cours de mathématiques Partie IV – Probabilités

Lycée Louis-Le-Grand, Paris Année 2018/2019 Cours de mathématiques Partie IV – Probabilités MPSI 4 Alain TROESCH Version du: 9 mai 2019

[PDF] cardinal d'un ensemble exercices corrigés

[PDF] calculer un cardinal

[PDF] cardinal de l ensemble des parties d un ensemble

[PDF] formule cardinal probabilité

[PDF] intersection probabilité formule

[PDF] comment calculer p(a)

[PDF] diviser des puissances de 10

[PDF] méthode de horner exercices

[PDF] methode de horner pdf

[PDF] methode de horner algorithme

[PDF] horner method

[PDF] méthode de horner exercice corrigé

[PDF] schema de horner

[PDF] algorithme de horner python

[PDF] seuil de rentabilité cours pdf

Cardinalité

Université de Toulouse

Année 2020/2021

1 / 23

Cardinalité des ensembles finis

Cardinalité des ensembles finis2 / 23

Ensembles équipotents

SoientE=fa;b;c;dgetF=f1;2;3g.Il existe une application surjective deEsurF, mais pas d"application injective.Il existe application injective deFsurE, mais pas d"application surjective. En fait, il n"y a pas assez d"éléments dansF(ou trop peu dansE). Le cardinal d"un ensemble précise la notion de nombre d"élémentsEnsemble de même cardinal Deux ensembles (fini ou non) sontéquipotentsou demême cardinals"il existe une bijection entre eux. Cardinalité des ensembles finisEnsembles équipotents3 / 23

Cardinal d"un ensemble fini

Définition

Un ensembleEestfinisiE=;ou si9n2?tel queEest en bijection avecf1;:::;ng. Cet entier est unique, il est appelé lecardinaldeEnoté

Card(E). SiE=;, on poseCard(E) =0.Pour montrer que cet entier est définit de manière unique, on prouve la

proposition suivante :Proposition S"il existe une application injective def1;:::;ngdansf1;:::;kgalors nk.S"il existe une application surjective def1;:::;ngdansf1;:::;kg alorsnk.S"il existe une application bijection def1;:::;ngdansf1;:::;kgalors n=k.Cardinalité des ensembles finisCardinal d"un ensemble fini4 / 23

Cardinal d"un ensemble fini

Définition

Un ensembleEestfinisiE=;ou si9n2?tel queEest en bijection avecf1;:::;ng. Cet entier est unique, il est appelé lecardinaldeEnoté Card(E). SiE=;, on poseCard(E) =0.Qui se traduit de la manière suivante avec les cardinaux.

Proposition

SoientEetFdeux ensembles finis. On a :Il existe une application injective deEdansFsi et seulement si Card(E)Card(F).Il existe une application surjective deEdansFsi et seulement si Card(E)Card(F).Il existe une application bijective deEdansFsi et seulement si Card(E) =Card(F).Cardinalité des ensembles finisCardinal d"un ensemble fini4 / 23

Principe des tiroirs

Principe des tiroirs

SoientEetFdeux ensembles finis non vides etf:E!Fune application. SiCard(E)>Card(F)alors il existex1;x22Etels quef(x1) =f(x2).Nombre moyen de cheveux : 150000

Nombre d"habitant à Paris : 2,2 million

Il y a au moins deux personnes à Paris qui ont exactement le même nombre de cheveux.Principe des tiroirs généralisé SoientEetFdeux ensembles finis non vides etf:E!Fune application. SiCard(E)>kCard(F)aveck2?alors il existe une valeur defqui est répétée au moinsk+1 fois.Cardinalité des ensembles finisPrincipe des tiroirs5 / 23

Principe des tiroirs

Principe des tiroirs

SoientEetFdeux ensembles finis non vides etf:E!Fune application. SiCard(E)>Card(F)alors il existex1;x22Etels quef(x1) =f(x2).Nombre moyen de cheveux : 150000

Nombre d"habitant à Paris : 2,2 million

Il y a au moins deux personnes à Paris qui ont exactement le même nombre de cheveux.Principe des tiroirs généralisé SoientEetFdeux ensembles finis non vides etf:E!Fune application. SiCard(E)>kCard(F)aveck2?alors il existe une valeur defqui est répétée au moinsk+1 fois.Cardinalité des ensembles finisPrincipe des tiroirs5 / 23

Dénombrement

Dénombrement6 / 23

Pourquoi dénombrer un ensemble fini?

En informatique vous utiliserez la notion de dénombrement au moins dans

les deux cas de figures suivants :dénombrer le nombre de cas à analyser par un algorithme en vu

d"étudier sa complexité;lorsqu"on tire au hasard un élément dans un univers finis de manière équiprobable (c"est à dire que chaque élément à la même probabilité d"être tiré), la probabilité que cet élément soit dans l"ensembleA est

P(A) =Card(A)Card(

):DénombrementMotivations7 / 23 Dénombrement et opérations sur les ensembles Union

Card(A[B) =Card(A) +Card(B)Card(A\B)AB

abcd efgh DénombrementOpération sur les ensembles8 / 23 Dénombrement et opérations sur les ensembles Union

Card(A[B) =Card(A) +Card(B)Card(A\B)

Card(A[B[C) =Card(A) +Card(B) +Card(C)Card(A\B)

Card(A\C)Card(B\C) +Card(A\B\C)AB

C abcd efgh i jkl m DénombrementOpération sur les ensembles8 / 23 Dénombrement et opérations sur les ensembles

Produit cartésien

Card(AB) =Card(A)Card(B)

Card(A1 An) =Card(A1) Card(An)a

1a 2a 3a

4(a1;b1)(a1;b2)(a1;b3)(a2;b1)(a2;b2)(a2;b3)(a3;b1)(a3;b2)(a3;b3)(a4;b1)(a4;b2)(a4;b3)A=fa1;a2;a3;a4g,B=fb1;b2;b3g,Card(AB) =43=12DénombrementOpération sur les ensembles9 / 23

Dénombrement et opérations sur les ensembles

Passage au complémentaire

Card €A

Š=Card(

)Card(A)DénombrementOpération sur les ensembles10 / 23

Arrangement

Permutation denélémentsNombre de façon de rangernobjets dans l"ordre. n! =n(n1)(n2) 21Examples :

DénombrementArrangement11 / 23

Arrangement

Permutation denélémentsNombre de façon de rangernobjets dans l"ordre. n! =n(n1)(n2) 21Examples : Voici les 4! =24 permutations de quatre éléments distincta,b,cetd: abcd abdc acbd acdb adbc adcb bacd badc bcad bcda bdac bdca cabd cadb cbad cdba cdab cdba dabc dacb dbac dbca dcab dcba

DénombrementArrangement11 / 23

Arrangement

Permutation denélémentsNombre de façon de rangernobjets dans l"ordre. n! =n(n1)(n2) 21Examples : Voici les 4! =24 permutations de quatre éléments distincta,b,cetd: abcd abdc acbd acdb adbc adcb bacd badc bcad bcda bdac bdca cabd cadb cbad cdba cdab cdba dabc dacb dbac dbca dcab dcba

De combien de façons pouvez-vous ranger 10 livres sur une étagère?DénombrementArrangement11 / 23

Arrangement

Permutation denélémentsNombre de façon de rangernobjets dans l"ordre. n! =n(n1)(n2) 21Examples : Voici les 4! =24 permutations de quatre éléments distincta,b,cetd: abcd abdc acbd acdb adbc adcb bacd badc bcad bcda bdac bdca cabd cadb cbad cdba cdab cdba dabc dacb dbac dbca dcab dcba De combien de façons pouvez-vous ranger 10 livres sur une étagère?

10! =3628800DénombrementArrangement11 / 23

Arrangement

Arrangements depéléments parminsans répétitionNombre de listes ordonnées depéléments parmin

A pn=n(n1)(n2) (np+1) =n!(np)!Examples :

DénombrementArrangement12 / 23

Arrangement

Arrangements depéléments parminsans répétitionNombre de listes ordonnées depéléments parmin

A pn=n(n1)(n2) (np+1) =n!(np)!Examples : LesA34=4332=24 arrangements de 3 éléments choisis parmia,b,c,d: abc abd acb acd adb adc bac bad bca bcd bda bdc cab cad cba cdb cda cdb dab dac dba dbc dca dcb

DénombrementArrangement12 / 23

Arrangement

Arrangements depéléments parminsans répétitionNombre de listes ordonnées depéléments parmin

A pn=n(n1)(n2) (np+1) =n!(np)!Examples :

Quinze chevaux participes à une course, le nombre de tiercé est :DénombrementArrangement12 / 23

Arrangement

Arrangements depéléments parminsans répétitionNombre de listes ordonnées depéléments parmin

A pn=n(n1)(n2) (np+1) =n!(np)!Examples : Quinze chevaux participes à une course, le nombre de tiercé est : A

315=151413DénombrementArrangement12 / 23

Arrangement

Arrangements depéléments parminsans répétitionNombre de listes ordonnées depéléments parmin

A pn=n(n1)(n2) (np+1) =n!(np)!Examples : Quinze chevaux participes à une course, le nombre de tiercé est : A

315=151413

Nombre d"injection deE=f1;2;3gdansF=f1;2;:::;15g:DénombrementArrangement12 / 23

Arrangement

Arrangements depéléments parminsans répétitionNombre de listes ordonnées depéléments parmin

A pn=n(n1)(n2) (np+1) =n!(np)!Examples : Quinze chevaux participes à une course, le nombre de tiercé est : A

315=151413

Nombre d"injection deE=f1;2;3gdansF=f1;2;:::;15g:

A

315=151413DénombrementArrangement12 / 23

Arrangement

Arrangement depéléments parminavec répétition :Nombre de listes ordonnées depéléments parmin, mais on s"autorise des

répétitions éventuelles des éléments n pExample : Les 3

2=9 arrangements avec répétitions de 2 éléments parmia,b,c:

aa ab ac ba bb bc ca cb ccProposition Le cardinal de l"ensemble des applications deEdansF, notéFE, est : Card €FEŠ=Card(F)Card(E)PropositionLe cardinal de l"ensemble des parties d"un ensembleEfini est : Card(P(E)) =2Card(E)DénombrementArrangement13 / 23

Arrangement

Arrangement depéléments parminavec répétition :Nombre de listes ordonnées depéléments parmin, mais on s"autorise des

répétitions éventuelles des éléments n pExample :

Raymond Queneau a écrit un ouvrage inti-

tuléCent mille milliards de poèmes. Il est composé de 10 pages contenant chacune 14 vers. Le lecteur peut composer son propre poème de 14 vers en prenant le premier vers de l"une des 10 pages puis le deuxième vers de l"une des 10 pages et ainsi de suite jusqu"au quatorzième vers.Proposition Le cardinal de l"ensemble des applications deEdansF, notéFE, est : Card

€FEŠ=Card(F)Card(E)

Proposition

Le cardinal de l"ensemble des parties d"un ensembleEfini est : Card(P(E)) =2Card(E)DénombrementArrangement13 / 23

Arrangement

Arrangement depéléments parminavec répétition :Nombre de listes ordonnées depéléments parmin, mais on s"autorise des

répétitions éventuelles des éléments n pProposition Le cardinal de l"ensemble des applications deEdansF, notéFE, est : Card

€FEŠ=Card(F)Card(E)Proposition

Le cardinal de l"ensemble des parties d"un ensembleEfini est : Card(P(E)) =2Card(E)DénombrementArrangement13 / 23

Arrangement

Arrangement depéléments parminavec répétition :Nombre de listes ordonnées depéléments parmin, mais on s"autorise des

répétitions éventuelles des éléments n pProposition Le cardinal de l"ensemble des applications deEdansF, notéFE, est : Card

€FEŠ=Card(F)Card(E)Proposition

Le cardinal de l"ensemble des parties d"un ensembleEfini est : Card(P(E)) =2Card(E)DénombrementArrangement13 / 23

Combinaison

Combinaisons depéléments parminsans répétition :nombre de sous-ensembles depéléments dans un ensemble contenantn

éléments

C pn=Apnp!=n!p!(np)!Example : LesC23=3!2!1!=3 combinaisons de 2 éléments choisis parmia,b,c: ab ac bc

DénombrementCombinaison14 / 23

Combinaison

Proposition

C npn=CpnCp+1 n+1=Cpn+Cp+1n (a+b)n=nX i=0Cknakbnk(formule du binôme)DénombrementCombinaison15 / 23

Combinaison

Combinaisons depéléments parminavec répétition :Nombre de listes non ordonnées, avec répétition éventuelle, depéléments

dans un ensemble contenantnéléments K pn=Cp n+p1=(n+p1)!p!(n1)!Examples :

DénombrementCombinaison16 / 23

Combinaison

Combinaisons depéléments parminavec répétition :Nombre de listes non ordonnées, avec répétition éventuelle, depéléments

dans un ensemble contenantnéléments K pn=Cp n+p1=(n+p1)!p!(n1)!Examples :

LesK24=C24+21=(4+21)!(41)!2!=542

=10 combinaisons avec répétitions de 2 lettres choisies parmia,b,c,dsont : aa ab ac ad bb bc bd cc cd dd

DénombrementCombinaison16 / 23

Combinaison

Combinaisons depéléments parminavec répétition :Nombre de listes non ordonnées, avec répétition éventuelle, depéléments

dans un ensemble contenantnéléments K pn=Cp n+p1=(n+p1)!p!(n1)!Examples :

LesK24=C24+21=(4+21)!(41)!2!=542

=10 combinaisons avec répétitions de 2 lettres choisies parmia,b,c,dsont : aa ab ac ad bb bc bd cc cd dd Combien y a-t-il de dominos avec 10 symboles différents?DénombrementCombinaison16 / 23

Combinaison

Combinaisons depéléments parminavec répétition :Nombre de listes non ordonnées, avec répétition éventuelle, depéléments

dans un ensemble contenantnéléments K pn=Cp n+p1=(n+p1)!p!(n1)!Examples :

LesK24=C24+21=(4+21)!(41)!2!=542

=10 combinaisons avec répétitions de 2 lettres choisies parmia,b,c,dsont : aa ab ac ad bb bc bd cc cd dd Combien y a-t-il de dominos avec 10 symboles différents? K

210=C210+21=11!9!:2!=11102

=55DénombrementCombinaison16 / 23

Résumé

Tirages depéléments parmin:TiragesOrdonnésNon ordonnés

Sans remiseA

pn=n!(np)!C pn=n!p!(np)!Avec remisen pK pn=Cp n+p1DénombrementCombinaison17 / 23

Résumé

Rangement depobjets dansncases :ObjetsDiscernablesIndiscernables

Un seul dans

chaque caseA pn=n!(np)!C pn=n!p!(np)!Éventuellement plusieurs dans chaque casen pK pn=Cp n+p1DénombrementCombinaison18 / 23

Cardinalité des ensembles infinis

Ensembles dénombrables

Cardinalité des ensembles infinis19 / 23

Ensembles dénombrables

Définition : Ensemble dénombrable

Un ensemble estdénombrables"il est fini ou s"il est en bijection?.Montrer que les ensembles suivants sont dénombrables :

?rf0gest dénombrable par la bijectionl"ensemble des nombres pairs, noté 2?, est dénombrable par la

bijectionl"ensemble des nombres impairs, noté 2?+1, est dénombrable par la

bijectionl"ensemble des entiers relatifs?est dénombrable par la bijectionl"ensemble?2est dénombrable par la bijectionProposition

Tout sous-ensembleX?est dénombrable.Cardinalité des ensembles infinis20 / 23

Critère de dénombrabilité

Proposition

Il existe une applicationf:X!?qui est injective si et seulement siX est dénombrable.Exemples d"applications : Un sous-ensemble d"un ensemble dénombrable est dénombrable.

2est dénombrable.?

kest dénombrable.Un produit fini d"ensembles dénombrables est dénombrable.

Proposition

Il existe une applicationf:?!Xqui est surjective si et seulement siX est dénombrable.Exemples d"applications : ?est dénombrable.Une union dénombrable d"ensembles dénombrables est dénombrable.

Cardinalité des ensembles infinis21 / 23

Ensembles non dénombrables

Théorème (Cantor 1981)

SoientEun ensemble. Il n"existe pas d"application bijective deEdans P(E).On en déduit queP(?)n"est pas dénombrable.Théorème L"ensemble[0;1[n"est pas dénombrable.Cardinalité des ensembles infinis22 / 23 S"il existe une application injective deAversBet une application injective deBversA, alors il existe une application bijection deAversB.Exemple d"application : P(?)et[0;1]sont en bijection car les deux fonctions suivantes sont des injections : f:P(?)![0;1] A7!P n2A3n g: [0;1]! P(?) x=0;x0x1x2x3x4:::7! fi2?sixi=1gCardinalité des ensembles infinis23 / 23quotesdbs_dbs11.pdfusesText_17