[PDF] Chapter 3 Matrices - Trinity College Dublin



Previous PDF Next PDF







Chapter 3 Matrices - Trinity College Dublin

and in general we can have m n matrices for any m 1 and n 1 Matrices with just one row are called row matrices A 1 n matrix [ x 1 x 2 x n] has just the same information in it as an n-tuple (x 1;x 2;:::;x n) 2Rn and so we could be tempted to identify 1 n matrices with n-tuples (which we know are points or vectors in Rn)



Exo7 - Cours de mathématiques

Matrices triangulaires, transposition, trace, matrices symétriques Fiche d'exercices ⁄ Calculs sur les matrices Les matrices sont des tableaux de nombres La résolution d’un certain nombre de problèmes d’algèbre linéaire se ramène à des manipulations sur les matrices Ceci est vrai en particulier pour la résolution des systèmes



Cours 0D : matrices

Cours 0D : matrices 4 Calcul de certaines suites récurrentes : B Soient (xn)n2N et (yn n2N deux suites réelles, vérifiant la relation de récurrence linéaire suivante : pour tout entier n 2N, n x n¯1 ˘ ¡9xn ¡18yn yn¯1 ˘ 6xn ¯12yn avec x0 ˘¡137 et y0 ˘18 Il s’agit de déterminer les termes généraux de ces deux suites en



Définition et opérations sur les matrices

deux matrices de formats respectifs (p,) ( ) Le produit AB est possible, mais le produit BA n’est possible que si mp=, et en général on a AB BA (la multiplication des matrices n’est pas commutative) ATTENTION à l’ordre dans lequel on écrit le produit • La multiplication des matrices est associative c'est-à-dire



Matrices in Computer Graphics

Dec 03, 2001 · The use of matrices in computer graphics is widespread Many industries like architecture, cartoon, automotive that were formerly done by hand drawing now are done routinely with the aid of computer graphics Video gaming industry, maybe the earliest industry to rely heavily on computer graphics, is now representing rendered polygon in 3



Matrices - Mathématiques en ECS1

Exercice 10 2 Pour n= 3, donner des matrices triangulaire supérieure (resp inférieure) et diagonale 10 2Opérations élémentaires sur les matrices Commençons par donner la dé nition intuitive suivante 94 Cours ECS1



ALG 10 Matrices et applications linéaires

somme et le produit de deux matrices, la transposée, donne l’inverse d’une matrice (3,3) à l’aide des cofacteurs et introduit les matrices symétriques et antisymétriques 1 Matrices et applications linéaires Nous allons compléter le cours d’algèbre linéaire en établissant un lien entre les deux points de vue



Calcul matriciel

On définit les matricesA + B et λA par : A+B = (ai,j +bi,j)1ďiďn 1ďjďp et λA = (λai,j)1ďiďn 1ďjďp Définition 9 ⚠ Attention ⚠ On ne peut additionner ou multiplier par une constante que des matrices de même format Exemple 10 (1 e 3 ln2 5 6) + (´2 0 1 0 π ´6) = (´1 e 4 ln2 5+π 0) Exemple 11 i (1+i i 3 ln2 ´i 0) = (i

[PDF] matrice carrée d'ordre 2

[PDF] matrice ligne

[PDF] matrice calcul

[PDF] matrice multiplication

[PDF] comment savoir si il prend du plaisir

[PDF] signes qu'un homme prend du plaisir

[PDF] arts visuels cycle 2 arbre printemps

[PDF] arts visuels arbres cycle 2

[PDF] arbre arts visuels cycle 3

[PDF] arbres arts visuels

[PDF] les arbres en arts plastiques ? l'école

[PDF] arbre arts visuels cycle 2

[PDF] arbre arts plastiques maternelle

[PDF] comment rediger un exercice de math

[PDF] redaction maths prepa

Chapter 3 Matrices - Trinity College Dublin

Chapter 3. Matrices

This material is in Chapter 1 of Anton & Rorres.

3.1 Basic matrix notation

We recall that amatrixis a rectangular array or table of numbers. We call the individual numbers entriesof the matrix and refer to them by their row and column numbers. The rows are numbered

1;2;:::from the top and the columns are numbered1;2;:::from left to right.

So we use what you might think of as a(row, colum) coordinate system for the entries of a matrix.

In the example2

41 1 2 5

1 11 132

2 1 3 43

5

13 is the(2;3)entry, the entry in row 2 and column 3.

The matrix above is called a34matrix because it has 3 rows and 4 columns. We can talk about matrices of all different sizes such as 4 5 7 11 22
4 7 21
4 7 122
44 5
7 11

13 133

5 32
and in general we can havemnmatrices for anym1andn1. Matrices with just one row are calledrow matrices. A1nmatrix[x1x2xn]has just the same information in it as ann-tuple(x1;x2;:::;xn)2Rnand so we could be tempted to identify1nmatrices withn-tuples (which we know are points or vectors inRn). We use the termcolumn matrixfor a matrix with just one column. Here is ann1(column) matrix 2 6 664x
1 x 2... x n3 7 775
and again it is tempting to think of these as the "same" asn-tuples(x1;x2;:::;xn)2Rn. Maybe not quite as tempting as it is for row matrices, but not such a very different idea. Toavoidconfusionthatwouldcertainlyariseifweweretomakeeitheroftheseidentifications (either of1nmatrices withn-tuplesorofn1matrices withn-tuples) we will not make either

of them and keep all the different objects in their own separate places. A bit later on, it will often

be more convenient to think of columnn1matrices as points ofRn, but we will not come to that for some time.

22012-13 Mathematics MA1S11 (Timoney)

Now, to clarify any confusion these remarks might cause, we explain that we consider two matrices to be the 'same" matrix only if they are absolutely identical. They have to have the same shape (same number of rows and same number of columns) and they have to have the same numbers in the same positions. Thus, all the following are different matrices 1 2 3 4 6=2 1 3 4

6=2 1 0

3 4 0 2 42 1
3 4 0 03 5

3.2 Double subscripts

When we want to discuss a matrix without listing the numbers in it, that is when we want to discuss a matrix that is not yet specified or an unknown matrix we use a notation like this with double subscriptsx11x12 x 21x22
This is a22matrix where the(1;1)entry isx11, the(1;2)entry isx12and so on. It would probably be clearer of we put commas in and write x1;1x1;2 x

2;1x2;2

instead, but people commonly use the version without the commas between the two subscripts. Carrying this idea further, when we want to discuss anmnmatrixXand refer to its entries we write X=2 6 664x

11x12x1n

x

21x22x2n.........

x m1xm2xmn3 7 775
So the(i;j)entry ofXis calledxij. (It might be more logical to call the matrixxin lower case, and the entriesxijas we have done, but it seems more common to use capital letters lineXfor matrices.) Sometimes we want to write something like this but we don"t want to take up space for the whole picture and we write an abbreviated version like

X= [xij]1im;1jn

To repeat what we said about when matrices are equal using this kind of notation, suppose we have twomnmatrices

X= [xij]1im;1jnandY= [yij]1im;1jn

ThenX=Ymeans themnscalar equationsxij=yijmust all hold (for each(i;j)with

1im;1jn). And if anmnmatrix equals anrsmatrix, we have to havem=r

(same number or rows),n=s(same number of columns) and then all the entries equal.

Matrices3

3.3 Arithmetic with matrices

In much the same way as we did withn-tuples we now define addition of matrices. We only allow addition of matrices that are of the same size. Two matrices of different sizes cannot be added.

If we take twomnmatrices

X= [xij]1im;1jnandY= [yij]1im;1jn

then we define

X+Y= [xij+yij]1im;1jn

(themnmatrix with(1;1)entry the sum of the(1;1)entries ofXandY,(1;2)entry the sum of the(1;2)entries ofXandY, and so on).

For example

2 42 1
34
0 73 5 +2 462
15 12 9 213 5 =2

42 + 6 1 + (2)

3 + 154 + 12

0 + (9) 7 + 213

5 =2 481
18 8 9 283 5 We next define the scalar multiplekX, for a numberkand a matrixX. We just multiply every entry ofXbyk. So if

X= [xij]1im;1jn

is anymnmatrix andkis any real number thenkXis anothermnmatrix. Specifically kX= [kxij]1im;1jn

For example For example

8 2 42 1
34
0 73 5 =2

48(2) 8(1)

8(3) 8(4)

8(0) 8(7)3

5 =2 416 8
2432
0 563 5 We see that if we multiply byk= 0we get a matrix where all the entries are 0. This has a special name. Themnmatrix where every entry is 0 is called themnzero matrix. Thus we have zero matrices of every possible size.

IfXis a matrix then we can say

X+0=X if0means the zero matrix of the same size asX. If we wanted to make the notation less ambiguous, we could write something like0m;nfor themnzero matrix. Then things we can note are that ifXis anymnmatrix then

X+0m;n=X;0X=0m;n

We will not usually go to the lengths of indicating the size of the zero matrix we mean in this way. We will write the zero matrix as0and try to make it clear what size matrices we are dealing with from the context.

42012-13 Mathematics MA1S11 (Timoney)

3.4 Matrix multiplication

This is a rather new thing, compared to the ideas we have discussed up to now. Certain matrices can be multiplied and their product is another matrix. IfXis anmnmatrix andYis annpmatrix then the productXYwill make sense and it will be anmpmatrix.

For example, then1 2 3

4 5 6 2

41 0 12

21 3 1

4 2 6 43

5 is going to make sense. It is the product ofquotesdbs_dbs2.pdfusesText_2