[PDF] Lecture 18 : Improper integrals - IIT Kanpur



Previous PDF Next PDF







05-03-072 The Fundamental Theorem of Calculus

Calculus I, Section5 3, #72 The Fundamental Theorem ofCalculus The sine integral function Si(x) = Z x 0 sin(t) t dt is important in electrical engineering [The integrand f(t) = (sin(t))/t is not defined when t = 0, but we know



Integrale di sin t=t e varianti - unipiit

Integrale di sint=t e varianti Annalisa Massaccesi 2 dicembre 2012 1 Integraledisint=t In riferimento all’es 7 del VII gruppo di esercizi, come già visto ad esercitazione, vogliamo dimostrareche R +1 0 sint=tdt2R Osservazione 1 Osserviamoinnanzituttoche lim t0 sint t = 1 essendoladerivatadelsenoint= 0 Dunque R ˇ 0



Table of Integrals

Integrals with Trigonometric Functions Z sinaxdx= 1 a cosax (63) Z sin2 axdx= x 2 sin2ax 4a (64) Z sinn axdx= 1 a cosax 2F 1 1 2; 1 n 2; 3 2;cos2 ax (65) Z sin3 axdx= 3cosax 4a + cos3ax 12a (66) Z cosaxdx=



Integral Asymptotics: Laplace’s Method

sint t e−λ cosh t dt Let g(t) = cosht and f(t) = sint/t The function g assumes a strict minimum over [−1,1] at the interior point t = 0, with g0(0) = 0 and g00(0) = 1 And since f(0) = 1, we have by (3), I(λ) ∼ e−λ r 2π λ as λ → ∞ (5) 5 There are three ideas behind Laplace’s method These are a



Lecture 18 : Improper integrals - IIT Kanpur

sint t dt and R1 cost t dt are convergent Improper integrals of the form Rb ¡1 f(t)dt are deflned similarly We say that R1 ¡1 f(t)dt is convergent if both Rc ¡1 f(t)dt and R1 R c f(t)dt are convergent for some element c in Rand 1 ¡1 f(t)dt = c ¡1 f(t)dt+ 1 c f(t)dt: Improper integral of second kind : Suppose Rb x f(t)dt exists for



DIFFERENTIATING UNDER THE INTEGRAL SIGN

DIFFERENTIATING UNDER THE INTEGRAL SIGN 3 so (2 4) Z 1 0 xe txdx= 1 t2 Di erentiate both sides of (2 4) with respect to t, again using (1 2) to handle the left side



Chapitre 3 - Int´egrales impropres

sint t dt est faussement impropre en 0, donc convergente En effet, sint t −−−−→ t→0+ 1 d) Exemples de r´ef´erence Les int´egrales impropres de r´ef´erence sont les int´egrales de Riemann : Th´eor`eme 3 (Crit`ere de Riemann) (i) Z +∞ 1 dt tα converge ⇐⇒ α > 1 (ii) Z 1 → 0 dt tα converge ⇐⇒ α < 1 3



AGRÉGATION INTERNE DE MATHÉMATIQUES

sint t sin2 t t = 1 cos2t 2t:= g(t) 0 et observer que g n’est pas intØgrable en +1 (en e˙et, cos2t=t l’est pour les mŒmes raisons que sint=t mais pas 1=t ) ce qui, via les thØorŁmes de comparaison pour les fonctions positives assure la non-intØgrabilitØ de t 7jsin(t) t j en l’in˝ni



4 Improper Integrals - homeiitmacin

138 Improper Integrals M T Nair 4 1 3 Typical examples Example 4 1 Consider the improper integral Z 1 1 1 x dx Note that Z t 1 1 x dx= [lnx]t 1 = lnt1 as t1: Hence, R 1 1 1 x dxdiverges



Calcul de primitives et dintégrales

On est bien ramené au calcul d'une primitive de la fonction rationnelle S(t) = R 2t 1+t2 1−t2 1+t2 2 1+t2 2- Règles de Bioche : Cependant, dans certains cas, on peut utiliser un changement de ariablev qui donne des calculs moins

[PDF] procédés théatraux

[PDF] tendinopathie genou traitement

[PDF] tendinite demi membraneux

[PDF] comment soigner une fabella

[PDF] fabella douloureuse

[PDF] tendinite poplité traitement

[PDF] mecanique de fluide resume

[PDF] mécanique des fluides bernoulli exercices corrigés

[PDF] fiche résumé mécanique des fluides

[PDF] formulaire mécanique des fluides pdf

[PDF] mécanique des fluides cours pdf

[PDF] question ? choix multiple culture générale

[PDF] question ? choix multiple definition

[PDF] choix multiple orthographe

[PDF] questions avec reponses multiples synonyme

1

Lecture 18 : Improper integrals

We de¯ned

Rb af(t)dtunder the conditions thatfis de¯ned and bounded on the bounded interval [a;b]. In this lecture, we will extend the theory of integration to bounded functions de¯ned on unbounded intervals and also to unbounded functions de¯ned on bounded or unbounded intervals. Improper integral of the ¯rst kind:Supposefis (Riemann) integrable on [a;x] for allx > a, i.e.,Rx af(t)dtexists for allx > a. If limx!1R x af(t)dt=Lfor someL2R;then we say that the improper integral (of the ¯rst kind)R1 af(t)dtconverges toLand we writeR1 af(t)dt=L.

Otherwise, we say that the improper integralR1

af(t)dtdiverges. Observe that the de¯nition of convergence of improper integrals is similar to the one given for series. For example,Rx af(t)dt; x > ais analogous to the partial sum of a series.

Examples :1. The improper integralR1

11 t

2dtconverges, because,Rx

11 t

2dt= 1¡1

x !1 asx! 1:

On the other hand,R1

11 t dtdiverges because limx!1Rx 11 t dt= limx!1logx. In fact, one can show thatR1 11 t pdtconverges to1 p¡1forp >1 and diverges forp·1.

2. Consider

R1

0te¡t2dt:We will use substitution in this example. Note thatRx

0te¡t2dt=1

2 R x2

0e¡sds=1

2 (1¡e¡x2)!1 2 as x! 1:

3. The integral

R1

0sintdtdiverges, because,Rx

0sintdt= 1¡cosx:

We now derive some convergence tests for improper integrals. These tests are similar to those used for series. We do not present the proofs of the following three results as they are similar to the proofs of the corresponding results for series. Theorem 17.1 :Supposefis integrable on[a;x]for allx > awheref(t)¸0for allt > a. If there existsM >0such thatRx af(t)dt·Mfor allx¸athenR1 af(t)dtconverges. This result is similar to the result:Ifan¸0for all n and the partial sumSn·Mfor all n, thenPanconverges.The proofs are also similar. One uses the above theorem to prove the following theorem which is analogous to the comparison test of series. In the following two results we assume thatfandgare integrable on [a;x] for allx > a. Theorem 17.2 : (Comparison test)Suppose0·f(t)·g(t)for allt > a:IfR1 ag(t)dt converges, thenR1 af(t)dtconverges.

Examples :1. The improper integralR1

1cos2t

t

2dtconverges, because 0·cos2t

t

2·1

t 2.

2. The improper integral

R1

12+sint

t dtdiverges, because2+sint t ¸1 t >0 for allt >1. Theorem 17.3 : (Limit Comparison Test(LCT))Supposef(t)¸0andg(t)>0for allx > a.

Iflimt!1f(t)

g(t)=cwherec6= 0;then both the integralsR1 af(t)dtandR1 ag(t)dtconverge or both diverge. In casec= 0, then convergence ofR1 ag(t)dtimplies convergence ofR1 af(t)dt.

Examples :1. The integralR1

1sin1 t dtdiverges by LCT, becausesin1 t 1 t !1 ast! 1.

2. Forp2R,R1

1e¡ttpdtconverges by LCT becausee¡ttp

t

¡2!0 asx! 1.

So far we considered the convergence of improper integrals of only non-negative functions. We will now consider any real valued functions. The following result is anticipated. 2

Theorem 17.4 :If an improper integralR1

ajf(t)jdtconverges thenR1 af(t)dtconverges i.e., every absolutely convergent improper integral is convergent.

Proof :SupposeR1

ajf(t)jdtconverges andRx af(t)dtexists for allx > a. Since

0·f(x)+jf(x)j ·2jf(x)j, by comparison testR1

a(f(x)+jf(x)j)dxconverges. This implies thatR1 The converse of the above theorem is not true (see Problem 2). The following result, known asDirichlet test, is very useful.

Theorem 17.5 :Letf;g: [a;1)!Rbe such that

(i)fis decreasing andf(t)!0ast! 1, (ii)gis continuous and there existsMsuch thatRx ag(t)dt·Mfor allx > a.

ThenR1

af(t)g(t)dtconverges. We will not present the proof of the above theorem but we will use it.

Examples :IntegralsR1

¼sint

t dtandR1

¼cost

t dtare convergent.

Improper integrals of the form

Rb

¡1f(t)dtare de¯ned similarly. We say thatR1

¡1f(t)dt

is convergent if bothRc

¡1f(t)dtandR1

cf(t)dtare convergent for some elementcinRandR1

¡1f(t)dt=Rc

¡1f(t)dt+R1

cf(t)dt:

Improper integral of second kind :SupposeRb

xf(t)dtexists for allxsuch thata < x·b(the functionfcould be unbounded on (a;b]). If limx!a+R b xf(t)dt=Mfor someM2R;then we say that the improper integral (of the second kind) Rb af(t)dtconverges toMand we writeRb af(t)dt=M.

Example :The improper integralR1

01 t pdtconverges forp <1 and diverges forp¸1. Comparison test and limit comparison test for improper integral of the second kind are analogous

to those of the ¯rst kind. If an improper integral is a combination of both ¯rst and second kind

then one de¯nes the convergence similar to that of the improper integral of the kindR1

¡1f(t)dt,

Problem 1:Determine the values ofpfor which1R

0f(x)dxconverges wheref(x) =1¡e¡x

x p.

Solution :LetI1=1R

0f(x)dxandI2=1R

1f(x)dx:We have to determine the values ofpfor which the

integralsI1andI2converge. Now one has to see how the functionf(x) behaves in the respective intervals and apply the LCT. Since limx!01¡e¡x x = 1, by LCT with1 x p¡1, we see thatI1is convergent i®p¡1<1,i.e.,p <2. Similarly,I2is convergent (by applying LCT with1 x p) i®p >1. Therefore 1R

0f(x)dxconverges i® 1< p <2.

Problem 2 :Prove thatR1

1sinx x pdxconverges but not absolutely for 0< p·1. Solution :Let 0< p·1. By Dirichlet's Test, the integral converges. We claim that1R

1jsinxj

x pdx does not converge. Since,jsinxj ¸sin2x, we see thatjsinx x pj ¸sin2x x p=1¡cos2x

2xp:By Dirichlet's Test,

1R

1cos2x

2xpdxconverges8p >0. But1R

11

2xpdiverges forp·1. Hence,1R

1jsinx

x pjdxdoes not converge.quotesdbs_dbs5.pdfusesText_10