[PDF] PROPRIÉTÉS DES SECTIONS - Cégep de Chicoutimi



Previous PDF Next PDF







Conduite pratique du calcul d’un CDG

Centre de gravité - Triangle rectangle Centre de gravité - Disque Centre de gravité - Demi-disque Somme des moments statiques Voici une section en I décomposée en trois rectangles Pour la section ci contre, le moment statique par rapport à l’axe xx’ est : Dans le cas d’une section creuse, on peut soustraire les parties vides :



Centre de gravité - Université libre de Bruxelles

Expérimentarium de l’ULB – Le centre de gravité : fiche pédagogique c Expérience 3 : comment détermine-t-on le centre de gravité ? Objectifs de l'expérience 3 •Trouver où est situé le centre de gravité d'un objet plat (2dimensions) et montrer qu'il n'est pas nécessairement situé dans l'objet Matériel •Une feuille cartonnée,



Calcul de barycentre pdf

Calcul de barycentre pdf La méthode baritcenter ou centre de gravité est utilisée dans la logistique pour déterminer l’emplacement d’une plate-forme, d’un entrepôt ou d’une plate-forme de distribution unique, ce qui réduira au minimum les coûts de distribution dans différentes directions



G 14110/1 F Méthode de calcul pour la hauteur du centre de

Méthode de calcul pour la hauteur du centre de gravité h R La hauteur du centre de gravité par rapport au sol pour véhicules remorqués (à vide, en charge) incluant d’une façon simple trois parties : le châssis, la carrosserie et le chargement (en charge) Cette méthode peut être utilisée par les constructeurs de remorques qui n



CALCUL DES INERTIES - FranceServ

Centre de gravité : on appelle centre de gravité d’une surface A le point G qui a pour coordonnées les valeurs suivantes : A Syy dA xdA x A =∑A = ∑ 1 A Sxx dA ydA y A =∑A = ∑ 1 pour trouver une droite passant par le centre de gravité d’un solide, on peut écrire l’égalité des moments statiques de part et d’autre de cet axe



D:My FilesCoursA - SyllabusSyllabus Méca ECAMMecaChap4

fig 4 3 - Position du centre de gravité fig 4 4 - Expression analytique de la position En effet, suspendre le système en A1 et mener la verticale d1 revient en fait à considérer en tous



PROPRIÉTÉS DES SECTIONS - Cégep de Chicoutimi

Le calcul du moment d'inertie passe toujours par celui du centre de gravité Dans cet exemple, le centre de gravité avait déjà été trouvé, donc nous ne l'avons pas refait 8 3 MODULE DE SECTION ET RAYON DE GIRATION 8 3 1 Module de section Une propriété des sections fréquemment employée dans la conception des poutre est le module de



Cours caractéristiques des sections

• Centre de gravité : Le centre de gravité (CdG) est le « point sur lequel un corps se tient en équilibre dans toutes ses positions » Notre section n’ayant pas de poids, on considérera qu’elle est soumise à une charge uniformément répartie • Moment statique : Moment de renversement de la section lorsque celle-ci est soumise



INTRODUCTION À L’ANALYSE FACTORIELLE DES CORRESPONDANCES

différentes dépendantes de la pondération De plus, la perpendiculaire abaissée sur le triangle de l’origine 0 se trouve au centre de gravité G des quatre points J, AF, AM et V Donc, l’axe OG est un axe d’inertie du nuage (axe trivial) Enfin, les moments d’inertie des deux nuages



Chapitre 4 Réponse des bâtiments en torsion-2009

Dans le contexte de l’action sismique, plusieurs faits sont à l’origine de la torsion des bâtiments Il y a d’abord l’existence d’excentricités structurales entre les centres de gravité CMi et les centre de rigidité CRi (ou centre de torsion, voir définition en 4 4 1) à chaque niveau i:

[PDF] centre de gravité d'un trapèze pdf

[PDF] centre de gravité géométrie

[PDF] centre de gravité d'un triangle calcul

[PDF] centre de gravité d'un arc de cercle

[PDF] centre de masse d'un cone creux

[PDF] centre de gravité cone tronqué

[PDF] centre de gravité formule

[PDF] calcul centre de gravité d'un triangle

[PDF] hauteurs d'un triangle

[PDF] point de concours des médiatrices

[PDF] propriété médiane triangle rectangle

[PDF] centre de gravité du corps humain definition

[PDF] centre de gravité homme femme

[PDF] centre de gravité d'une personne

[PDF] centre de gravité équilibre

8

PROPRIÉTÉS DES SECTIONS

8.1.1 Généralités

Dans l'étude des déflexions des poutres ainsi que du flambage des colonnes, on est amené à utiliser

l'une ou l'autre des propriétés des sections droites, qui sont des caractéristiques purement

géométriques. On retrouve: • Axe neutre d'une surface; • Centre de gravité d'une surface; • Moment statique d'une surface; • Moment d'inertie; • Module de section; • Rayon de giration.

8.1.2 Surface neutre et axe neutre

Lorsqu'une poutre est soumise à des forces qui tendent à la courber, les fibres situées a u-dessus (ou

au-dessous) d'un certain plan de la poutre sont en compression et elles se raccourcissent, tandis que

les fibres situées au-dessous (ou au-dessus) de ce plan sont tendues et elles s'allongent. Le plan

intermédiaire en question est appelé surface neutre de la poutre (voir figure 8.1).

Pour une section droite de la poutre, la li

gne correspondant à la surface neutre s'appelle axe neutre

de cette section. L'axe neutre passe toujours par un point particulier "cg" de la section droite d'une

poutre nommé centroïde ou centre de gravité de cette section. 137
Axe neutre (A.N.): C'est le plan qui ne subit aucun allongement pendant la flexion d'une poutre.

Fig. 8.1

L'axe neutre A.N. passe par le centre de gravité ou centroïde.

8.1.3 Centre de gravité (cg)

Le centre de gravité (cg) ou centroïde d'un corps ou d'une surface est un point imaginaire où toute

cette surface peut être considérée comme concentrée. C'est aussi le point où le poids d'un corps est

concentré.

Si un corps est homogène, c'est-à-dire constitué d'un seul matériau, le cg dépend seulement de la

forme du corps. Si un corps possède un axe de symétrie, son cg est situé sur cet axe (fig. 8.2).

Fig. 8.2

138

L'axe de symétrie partage le corps en deux parties de même surface, de même poids. Si un corps

possède au moins deux axes de symétrie (ou médiane), son cg se trouve au point d'intersection de

ces axes. Le cg n'est pas toujours dans la matière. La figure 8.3 illustre le centre de gravité de

différentes surfaces régulièrement utilisées.

Fig. 8.3

La position de quelques autres surfaces est donnée dans les tableaux à la fin du chapitre. D'autres cas

particuliers peuvent être retrouvés dans les "Handbooks" ou livres spécialisées. 139

8.2 MOMENT D'INERTIE

8.2.1 Moment d'inertie

Considérons une surface plane A dans laquelle

un élément de surface a i infiniment petit est indiqué. Cet élément se trouve à une distance d i d'un axe quelconque "o". On appelle moment d'inertie I i de l'élément de surface a i par rapport à l'axe considéré "o", le produit de cet élément par le carré de la distance d i A a i d i o

Fig. 8.7

I i(o) = a i x d i 2 (8.3 a) Si la surface A est subdivisée en N éléments infiniment petits a 1 , a 2 , a 3 , ... , a N dont les distances respectives à l'axe sont d 1 , d 2 , d 3 , ... , d N alors le moment d'inertie de cette surface par rapport au même axe "o" est donné par la relation suivante: I o = I 1(o) + I 2(o) + ... + I N(o) I o = a 1 d 1 2 + a 2 d 2 2 + ... + a N d N 2 I o = a i d i 2 [m 4 ] (8.3) Le moment d'inertie des sections droites est d'une grande importance dans la conception des poutres

et colonnes. Les tableaux à la fin du chapitre portant sur les propriétés des sections donnent des

valeurs des moments d'inertie de plusieurs profilés d'acier fréquemment utilisés dans la construction.

140

Les autres moments d'inertie peuvent être trouvés dans des "handbooks". La figure suivante donne

quelques moments d'inertie de figures communes. cg axe b h I cg b h 3 12 cg axe I cg d 4 64
b h cg axe I cg b h 3 36

Fig. 8.8

8.2.2 Théorème des axes parallèles

Si on connaît le moment d'inertie d'une surface par rapport à un axe qui passe par son centre de

gravité, on peut connaître son moment d'inertie par rapport à tout autre axe parallèle à ce dernier. Il

suffit d'ajouter la quantité As 2

à son I

cg

Théorème des axes parallèles:

I = I cg + As 2 (8.4) où s = distance entre l'axe choisi et l'axe qui passe par le cg.

A = aire de la section

I cg = moment d'inertie par rapport à un axe qui passe par le cg. 141
EXEMPLE 8.2: Calculer le moment d'inertie du rectangle ci-dessous par rapport à l'axe z passant par sa base.

Solution:

I z = I cg + As 2 b h 3 12 + (bh) h 2 2 b h 3 12 bh 3 4 b h 3 3 cg b h z h/2

Fig. 8.9

Pour les sections complexes ou composées de plusieurs sections simples, le moment d'inertie est

égal à la somme des moments d'inertie de chacune des sections. Si la surface composée possède une

surface creuse, le moment de la section creuse est alors négatif. Dans le cas des surfaces composées,

le théorème des axes parallèles est alors très utile. Comme par exemple, la section en T du premier

exemple, si on veut savoir le moment d'inertie de la surface totale, on doit utiliser le théorème, c'est

ce que nous ferons dans le prochain exemple. EXEMPLE 8.3: Calculer le moment d'inertie par rapport à l'axe neutre de la section en T ci- dessous. (fig. 8.10)

Solution:

Nous avions déjà trouvé le cg de la surface totale dans le premier exemple, on sait que l'axe neutre passe par le centre de gravité. Maintenant on veut le moment d'inertie par rapport à cet axe. I AN = I

AN(surface 1)

+ I

AN(surface 2)

I

AN(surface 1)

= I cg1 + A 1 s 1 2 I

AN(surface 2)

= I cg2 + A 2 s 2 2 1 cm

4,5 cm

A 2

2,59 cm

2 cm 5 cm 6 cm A.N. cg A 1

Fig. 8.10

142
I cg1

2 cm (5 cm)

3 12 = 20,833 cm 4 et I cg2

6 cm (2 cm)

3 12 = 4 cm 4 I

AN(surf 1)

= 20,833 cm 4 + (2 cm x 5 cm)(1,91 cm) 2 = 20,833 cm 4 + 36,481 cm 4 = 57,314 cm 4 I

AN(surf 2)

= 4 cm 4 + (2 cm x 6 cm)(1,59 cm) 2 = 4 cm 4 + 30,337 cm 4 = 34,337 cm 4

Donc I

AN = 57,314 cm 4 + 34,337 cm 4 = 91,651 cm 4

Le calcul du moment d'inertie passe toujours par celui du centre de gravité. Dans cet exemple, le centre de gravité avait

déjà été trouvé, donc nous ne l'avons pas refait.

8.3 MODULE DE SECTION ET RAYON DE GIRATION

8.3.1 Module de section

Une propriété des sections fréquemment employée dans la conception des poutre est le module de

section. Il s'emploie notamment dans les calculs des contraintes normales dues à la flexion. Par

contre on s'en sert surtout si la surface est symétrique par rapport à l'axe horizontal, c'est-à-dire que

son axe neutre est dans le plan de symétrie de la figure. Axe

Neutre

c c c c

Fig. 8.11

On appelle S le module de section et on le définit: S = I c m 3 (8.5) où I = moment d'inertie de la surface par rapport à l'AN c = distance perpendiculaire entre l'AN et le point le plus éloigné de la section. 143

À cause de la symétrie, S est le même que l'on mesure en haut ou en bas. On peut quand même

calculer le module de section non symétrique en utilisant la distance la plus éloignée de l'axe neutre.

Les tableaux situés à la fin du chapitre donne les valeurs de S pour différentes surfaces et profilés

utilisés couramment.

8.3.2 Rayon de giration

Dans l'analyse des colonnes, on utilise constamment une caractéristique nommée rayon de giration.

Le rayon de giration est la distance entre un axe et un point où on peut considérer que toute la

surface est concentrée de telle sorte que son moment d'inertie demeure le même.

I = A d

2 = A r 2

On appelle "r" le rayon de giration. D'où:

r = I A m (8.6) où I = moment d'inertie de la surface au cg

A = aire de la surface

EXEMPLE 8.4: Calculer les rayons de giration horizontaux et verticaux de la figure ci dessous.

Solution:

I cgx

6 cm (2 cm)

3 12 = 4 cm 4

A = 12 cm

2 r x 4 cm 4 12 cm 2 = 0,58 cm I cgy

2 cm (6 cm)

3 12 = 36 cm 4 cg 2 cm 6 cm A x

0,58 cm

y

1,73 cm

A

Fig. 8.12

A = 12 cm

2 144
r y 36 cm
4 12 cm 2 = 1,73 cm

Le rayon de giration diffère selon l'axe de référence utilisé, ainsi si on regarde selon l'axe horizontal "x", le rayon de

giration de l'exemple précédent est de 0,58 cm. C'est comme si on concentrait toute la surface à 0,58 cm de l'axe des x.

EXEMPLE 8.5: Calculer les rayons de giration de la surface en T du premier exemple, premièrement par rapport à l'axe neutre et deuxièmement par rapport à l'axe de symétrie vertical.

Solution:

1-Par rapport à l'axe neutre:

I AN = 91,65 cm 4

A = 22 cm

2 d'où rx =

91,65 cm

4 22 cm
2 = 2,04 cm

2-Par rapport à l'axe de symétrie:

I AS

2 cm (6 cm)

3 12

5 cm (2 cm)

3 12 = 39,333 cm 4 ry =

39,33 cm

4 22 cm
2 = 1,34 cm 1 cm

4,5 cm

A 2

2,59 cm

2 cm 5 cm 6 cm A.N. cg A 1

Fig. 8.13

145

8.4 PROPRIÉTÉS DES SECTIONS: TABLEAUX

Figure

Aire Moment

Inertie

Module

Section

Rayon

Giration

A I ANquotesdbs_dbs7.pdfusesText_13