[PDF] The complex inverse trigonometric and hyperbolic functions



Previous PDF Next PDF







The complex inverse trigonometric and hyperbolic functions

since ix + √ 1− x2 is a complex number with magnitude equal to 1 Moreover, ix + √ 1− x2 lives either in the first or fourth quadrant of the complex plane, since Re(ix +



Euler’s Formula and Trigonometry

Euler’s Formula and Trigonometry Peter Woit Department of Mathematics, Columbia University September 10, 2019 These are some notes rst prepared for my Fall 2015 Calculus II class, to



EXERCICES RÉDIGÉS SUR LES NOMBRES COMPLEXES

3 En déduire la valeur exacte du cosinus et sinus suivants : cos p 12 et sin p 12 Exercice 2 Des pistes pour démontrer qu'un complexe est réel ou imaginaire pur Démontrer les équivalences suivantes : Z réel Û Z =Z Z Î Û ( Z = 0 ou arg(Z) = 0 [p] ) Z imaginaire pur Û Z +Z = 0 Z Î i Û ( Z = 0 ou arg(Z) = p 2 [p] ) Applications : 1



Trigonométrie - Free

2 CHAPITRE2 TRIGONOMÉTRIE Remarque2 1 1 A partir des propriétés de l’exponentielle complexe on retrouve que, pour tout a et b réels: cosa = cosb 9k 2 Z; a = b+2k ou a = ¡b+2k



Les nombres complexes - Partie II

nombre complexe I Définitions 7 Calculs de modules et arguments 11 Représentation géométrique 12 Problème 12 Forme trigonométrique 12 Exercice 15 Déterminer un ensemble de points 15 A Définitions Définition: Module et Argument Dans le plan complexe muni d'un repère orthonormé , on considère un point M d'affixe non nulle



Chapitre 4 Nombres complexes - WordPresscom

Un nombre complexe zest un nombre de la forme z= a+ibavec a2R et b2R L'ensemble des nombres complexes est noté C De nition 2 L'écriture d'un nombre complexe zsous la forme z= a+ibest appelée forme algébrique d'un nombre complexe Le nombre réel aest appelé partie réelle de zet on note a= Re (z)



4 Fourier transformation and data processing

4–2 Fourier transformation and data processing S x S y S 0 Ωt Fig 4 3 The xand y components of the signal can be thought of as arising from therotationofavectorS0 at frequency If the magnetization does indeed start along x then Fig 3 16 needs to be



TRIGONOMÉTRIE ET FONCTIONS CIRCULAIRES

Théorème : Les fonctions sinus et cosinus sont périodiques de période 2p De plus, la fonction cosinus est paire et la fonction sinus est impaire (cos(-x) = cos x et sin(-x) = -sin x) Représentation graphique des fonctions sinus et cosinus : Les courbes ci-dessus sont appelées des sinusoïdes



Chapitre 10 Probabilités conditionnelles Loi binomiale

CHAPITRE 10 PROBABILITÉS CONDITIONNELLES LOI BINOMIALE Étant donné une épreuve de Bernoulli où la probabilité d’obtenir un succès S est p et le schéma de Bernoulli consistant à répéter n fois de manière indépendante cette épreuve



Curs4 - pubro

Imitanţe complexe Pentru un dipol liniar pasiv (fig 1 28), la bornele căruia se cunosc tensiunea şi intensitatea curentului electric, se poate defini impedanţa complexă a dipolului ca raportul dintre cele două mărimi mai sus amintite: Fig 1 28 Dipolul liniar pasiv

[PDF] somme exponentielle complexe

[PDF] primitive exponentielle complexe

[PDF] exponentielle i pi

[PDF] métaheuristique cours pdf

[PDF] module de exp(ix)

[PDF] méthodes métaheuristiques

[PDF] algorithme heuristique pdf

[PDF] généralités sur les systèmes automatisés de production

[PDF] différence entre heuristique et métaheuristique

[PDF] structure fonctionnelle d'un système automatisé

[PDF] méthodes heuristiques d'optimisation

[PDF] définition d'un système automatisé de production

[PDF] méthodes heuristiques et métaheuristique d'optimisation

[PDF] méthode heuristique optimisation

[PDF] système automatisé de production sap

Physics 116AWinter 2010

The complex inverse trigonometric and hyperbolic functions In these notes, we examine the inverse trigonometric and hyperbolic functions, where the arguments of these functions can be complex numbers. These are all multi-valued functions. We also carefully define the corresponding single-valued principal values of the inverse trigonometric and hyperbolic functions following the conventions of

Abramowitz and Stegun (see ref. 1).

1. The inverse trigonometric functions: arctan and arccot

We begin by examining the solution to the equation z= tanw=sinw cosw=1i? eiw-e-iweiw+e-iw? =1i? e2iw-1e2iw+ 1?

We now solve fore2iw,

iz=e2iw-1 e2iw+ 1=?e2iw=iz+ 11-iz=i-zi+z. Taking the complex logarithm of both sides of the equation, we can solve forw, w=1

2iln?i-zi+z?

The solution toz= tanwisw= arctanz. Hence,

arctanz=12iln?i-zi+z? Since the complex logarithm is a multi-valued function, it follows that the arctangent function is also a multi-valued function. We can define theprincipal valueof the arctangent function (denoted with a capitalA) by employing the principal value of the logarithm,

Arctanz=12iLn?i-zi+z?

We now examine the principal value of the arctangent for real-valued arguments.

Settingz=x, wherexis real,

Arctanx=1

2iLn?i-xi+x?

=12i?

Ln????i-xi+x????

+iArg?i-xi+x?? 1

Noting that????i-x

i+x????2 =?i-xi+x?? -i-x-i+x? =?1 +x21 +x2? = 1, it follows that

Arctanx=1

2Arg?i-xi+x?

is:

Indeed, if we write

i-x i+x=e2iθ=?2θ= Arg?i-xi+x? and solve forx, then one obtainsx= tanθ, or equivalentlyθ= Arctanx.

Starting from

z= cotw=cosw sinw=i?eiw+e-iweiw-e-iw? =i?e2iw+ 1e2iw-1? an analogous computation yields, arccotz=12iln?z+iz-i? The principal value of the complex arccotangent function isgiven by

Arccotz=12iLn?z+iz-i?

Using the definitions given by the boxed equations above yield: arccot(z) = arctan?1 z? ,(1)

Arccot(z) = Arctan?1

z? .(2) Note that eqs. (1) and (2) can be used asdefinitionsof the inverse cotangent function and its principal value. We now examine the principal value of the arccotangent for real-valued arguments.

Settingz=x, wherexis real,

Arccotx=1

2Arg?x+ix-i?

2 The principal interval of the real-valued arccotangent function is: It is instructive to derive another relation between the arctangent and arccotangent functions. First, we first recall the property of the multi-valued complex logarithm, ln(z1z2) = ln(z1) + ln(z2),(4) as a set equality. It is convenient to define a new variable, v=i-z i+z,=? -1v=z+iz-i.(5)

It follows that:

arctanz+ arccotz=1 2i? lnv+ ln? -1v?? =12iln?-vv? =12iln(-1). Since ln(-1) =i(π+ 2πn) forn= 0,±1,±2..., we conclude that arctanz+ arccotz=12π+πn,forn= 0,±1,±2,... To obtain the corresponding relation between the principalvalues, we compute

Arctanz+ Arccotz=1

2i?

Lnv+ Ln?

-1v?? 1 2i?

Ln|v|+ Ln?1|v|?

+iArgv+iArg? -1v?? 1 2?

Argv+ Arg?

-1v?? .(6) It is straightforward to check that for any non-zero complexnumberv,

Argv+ Arg?

-1 v?

π,for Imv≥0,

-π ,for Imv <0.(7)

Using eq. (5), we can evaluate Imvby computing

i-z i+z=(i-z)(-i- z) (i+z)(-i+z)=1- |z|2+ 2iRez|z|2+ 1 + 2Imz.

Writing|z|2= (Rez)2+ (Imz)2in the denominator,

i-z i+z=1- |z|2+ 2iRez(Rez)2+ (Imz+ 1)2. 3

Hence,

Imv≡Im?i-z

i+z? =2Rez(Rez)2+ (Imz+ 1)2.

We conclude that

Imv≥0 =?Rez≥0,Imv <0 =?Rez <0.

Therefore, eqs. (6) and (7) yield:

Arctanz+ Arccotz=???1

2π ,for Rez≥0,

1

2π ,for Rez <0.

(8) ?CAUTION!! Many books do not employ the definition for the principal value of the inverse cotangent function given above. Instead, they choose to define:

Arccotz=π

2-Arctanz .(9)

Note that with this definition, the principal interval of thearccotangent function for real valuesxis instead of the interval quoted in eq. (3). One advantage of this latter definition is that the real-valued inverse cotangent function, Arccotxis continuous atx= 0, in contrast to eq. (8) which exhibits a discontinuity atx= 0.?On the other hand, one drawback of the definition of eq. (9) is that eq. (2) is no longer respected. Additional disadvantages are discussed in refs. 2 and 3, where you can find a detailed set of arguments (from the computer science community) in supportof the conventions adopted by Abramowitz and Stegun (ref. 1) and employed in these notes.

2. The inverse trigonometric functions: arcsin and arccos

The arcsine function is the solution to the equation: z= sinw=eiw-e-iw 2i. ?In our conventions, the real inverse tangent function, Arctanx, is a continuous single-valued function that varies smoothly from-1

2πto +12πasxvaries from-∞to +∞. In contrast, Arccotx

varies from 0 to-1

2πasxvaries from-∞to zero. Atx= 0, Arccotxjumps discontinuously

up to 1

2π. Finally, Arccotxvaries from12πto 0 asxvaries from zero to +∞. Following eq. (8),

Arccot 0 = +π/2, although Arccotx→ -1

2πasx→0-(which means asxapproaches zero from

the negative side of the origin). 4

Lettingv≡eiw, we solve the equation

v-1 v= 2iz . Multiplying byv, one obtains a quadratic equation forv, v

2-2izv-1 = 0.(10)

The solution to eq. (10) is:

v=iz+ (1-z2)1/2.(11) Sincezis a complex variable, (1-z2)1/2is the complex square-root function. This is a multi-valued function with two possible values that differby an overall minus sign. Hence, we do not explicitly write out the±sign in eq. (11). To avoid ambiguity, we shall write v=iz+ (1-z2)1/2=iz+e1

2ln(1-z2)=iz+e12[Ln|1-z2|+iarg(1-z2)]

=iz+|1-z2|1/2ei

2arg(1-z2).

By definition,v≡eiw, from which it follows that w=1 ilnv=1iln? iz+|1-z2|1/2ei

2arg(1-z2)?

The solution toz= sinwisw= arcsinz. Hence,

arcsinz=1iln? iz+|1-z2|1/2ei

2arg(1-z2)?

The principal value of the arcsine function is obtained by employing the principal value of the logarithm and the principle value of the square-root function (which corresponds to employing the principal value of the argument). Thus, we define

Arcsinz=1iLn?

iz+|1-z2|1/2ei

2Arg(1-z2)?

We now examine the principal value of the arcsine for real-valued arguments. Setting z=x, wherexis real,

Arcsinx=1

iLn? ix+|1-x2|1/2ei

2Arg(1-x2)?

For|x|<1, Arg(1-x2) = 0 and|1-x2|=⎷

1-x2defines the positive square root.

Thus,

Arcsinx=1

iLn? ix+⎷1-x2? =1i? Ln??? ix+⎷1-x2???+iArg? ix+⎷1-x2?? = Arg ix+⎷ 1-x2? ,(12) 5 sinceix+⎷1-x2is a complex number with magnitude equal to 1. Moreover, ix+⎷

1-x2lives either in the first or fourth quadrant of the complex plane, since

Re(ix+⎷

1-x2)≥0. It follows that:

The arccosine function is the solution to the equation: z= cosw=eiw+e-iw 2.

Lettingv≡eiw, we solve the equation

v+1 v= 2z . Multiplying byv, one obtains a quadratic equation forv, v

2-2zv+ 1 = 0.(13)

The solution to eq. (13) is:

v=z+ (z2-1)1/2. Following the same steps as in the analysis of arcsine, we write w= arccosz=1 ilnv=1iln?z+ (z2-1)1/2?,(14) where (z2-1)1/2is the multi-valued square root function. More explicitly, arccosz=1 iln? z+|z2-1|1/2ei

2arg(z2-1)?

.(15) It is sometimes more convenient to rewrite eq. (15) in a slightly different form. Recall that arg(z1z2) = argz+ argz2,(16)quotesdbs_dbs4.pdfusesText_8