[PDF] Les symboles somme et produit - lyceedadultesfr



Previous PDF Next PDF







SOMMES PRODUITS COEFFICIENTS BINOMIAUX

Nous calculerons souvent des sommes doubles cette année Retenez bien l’idée générale suivante : Quand on ne sait pas quoi faire de deux sommes emboîtées, on peut toujours essayer de les permuter Exemple Soit n ∈ N∗ On ne voit pas trop comment on pourrait simplifier la somme Xn j=i 1 j = 1 i + 1 i +1 + + 1 n pour tout i ∈ ¹1



Les symboles somme et produit - lyceedadultesfr

i)une suite de nombres réels ou complexes Soit deux entiers naturels n et p tels que p 6n, on définit la somme suivante par : n ∑ k=p a k =ap +ap+1 +···+an Soit I un sous-ensemble fini de N, la somme de tous les termes a i, i décrivant I sera notée ∑ i∈I a i Remarque : • Lavariablek estunevariablemuette,c’estàdirequ



Sommes et produits nis

- on peut passer par une somme ( ou un produit) a 2 indices sur un ’triangle d’indices’ - on peut consid erer un syst eme d’in egalit es que l’on transforme 2 3 produit de deux sommes simples : Attention : dans ce qui suit, on ne peut pas remplacer P par Q produit de deux sommes : Xq k=p b k Xq0 j=p0 c j = Xq k=p Xq0 j=p0 b kc j



Sommes, produits, récurrence

Proposition 1 Règles de calcul sur les sommes On a le droit d'e ectuer les opérations suianvtes : • factoriser par une constante : iX=n i=0 ax i = a Xi=n i=0 x i • séparer ou regrouper des sommes de mêmes indices : iX=n i=0 a i +b i = Xi=n i=0 a i + Xi=n i=0 b i • séparer les indices en deux (relation de Chasles) : iX=n i=0 a i



Je sais faire - Sommes, produits, coefficients binomiaux

k dépend de n mais pas de k, et que la lettre k pourrait être remplacée par n’importe quelle lettre différente de n ˙ Je sais écrire le produit de deux sommes comme une somme double 1 Écrire comme une somme double le produit : Xn k=1 p k × Xn k=1 1 p k pour tout n ∈ N∗ ˙ Je sais effectuer un changement d’indice dans une somme 2



Sommes et Produits - Weebly

Calculs de sommes et de produits 1 Sommes et produits 1 1 Définition Notation 1 Soient n et p deux entiers relatifs tels que p 6n; on appelle intervalle d’entiers compris entre p et n, l’ensemble des entiers relatifs k vérifiant : p 6k 6n et on note cet ensemble Jp,nK Autrement dit, Jp,nK ={k ∈ Z, p 6k 6n}



Exercices 3 Sommes, produits et coefficients binomiaux

On considère les deux sommes Un ˘ Xn k˘0 ˆ 2n 2k (¡1)k et Vn ˘ nX¡1 k˘0 ˆ 2n 2k¯1 (¡1)k 1 Vérifier que Un ¯iVn ˘(1¯i)2n et en déduire des expressions simplifiées de Un et de Vn 2 Redémontrer que U2p¯1 ˘V2p ˘0 par un changement d’indice LLG \PCSI2 Exercices3 \5



P Q Sommes et produits nis : et

Soit qun nombre r eel (ou complexe) di erent de 1 et nun entier x e 1 Calculer (1 kq) Pn k=0 q et en d eduire la formule de la somme g eom etrique 2 A l’aide d’un changement de variable appropri e, en d eduire la formule g en eralis ee Exercice 7: Somme et r ecurrence Montrer par r ecurrence la formule de la somme des cubes : pour tout



Sommes et produits de nombres - heb3org

Math ematiques PTSI (Lyc ee D eodat de S everac) Sommes et produits de nombres 9 / 30 G en eralit es et propri et es des sommes Quelques sommes usuelles Ø somme des termes d’une suite g eom etrique :

[PDF] indemnité de mobilité fonction publique territoriale

[PDF] calcul prime de mobilité

[PDF] indemnité de mobilité cdg

[PDF] changement de résidence administrative fonction publique territoriale

[PDF] prime de mobilité professionnelle

[PDF] indemnité de mobilité professionnelle

[PDF] indemnité mobilité pole emploi

[PDF] clause de mobilité legifrance

[PDF] code du travail marocain mutation

[PDF] code de travail marocain changement de poste

[PDF] clause de mobilité code du travail maroc

[PDF] code de travail marocain mobilité

[PDF] clause de mobilité droit marocain

[PDF] tutoriel padlet 2017

[PDF] exercice sur les points de vue

DERNIÈRE IMPRESSION LE27 février 2017 à 15:46

Les symboles somme et produit

Table des matières

1 Le symbole sommeΣ2

1.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Linéarité et changement d"indice. . . . . . . . . . . . . . . . . . . . 3

1.3 Sommes télescopiques. . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Sommes à connaître. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Sommes doubles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Le symbole produitΠ9

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Relation produit - somme. . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Produits télescopiques. . . . . . . . . . . . . . . . . . . . . . . . . . 9

PAUL MILAN1VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1 Le symbole sommeΣ

1.1 Définition

Définition 1 :Soit(ai)une suite de nombres réels ou complexes. Soit deux entiers naturelsnetptels quep?n, on définit la somme suivante par : n∑ k=pa k=ap+ap+1+···+an Soit I un sous-ensemble fini deN, la somme de tous les termesai,idécrivant I sera notée∑ i?Ia i

Remarque :

•La variablekest une variable muette, c"est à dire qu"une fois la somme calculée, le résultat ne dépend plus dek. On peut donc lui donner le nom qu"on veut :i, j,k, etc. à exception des bornes de la somme, icipetn:n∑ k=pa k=n∑ i=pa i=n∑ j=pa j

•On retrouve cette variable muette, lorsque l"on veut calculer une somme àl"aide d"un algorithme. (boucle Pour)

•Lorsque les termes de la somme ne dépendent pas de la variable, on somme des termes constants donc : n∑ k=03=3+3···+3? n+1 termes=3(n+1)

•Si I={2;4;6}alors∑

i?Ia i=a2+a4+a6.

Exemples :

•1+2+···+n=n∑

k=1k.

•1+2+22+···+2n=n∑

k=02k. •1 n+1+1n+2+···+12n=n∑ k=11n+k.

•1+3+5+···+(2n-1) =n∑

k=1(2k-1). ?Ne pas confondre : n∑ k=1(k+1) =n∑ k=1k+navecn∑ k=1k+1 les parenthèses font toute la différence. n∑ k=022k(n+1 termes) et2n∑ k=02k(2n+1 termes) Propriété 1 :Relation de Chasles et linéarité :

Relation de Chasles :

n∑ k=pa k= m∑ k=pa k+n∑ k= m+1 ak

L"opérateur somme est linéaire :

n∑ k=p(αak+βbk) =αn∑ k=pa k+βn∑ k=pb k.

PAUL MILAN2VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

Exemple :n∑

k=0a k=

2∑

k=0a k+n∑ k= 3 aketn∑ k=0(3k+4k) =n∑ k=03k+4n∑ k=0k

1.2 Linéarité et changement d"indice

Propriété 2 :Changement d"indice.

L"expression à l"aide du symbole

∑n"est pas unique. On peut écrire une somme avec des indices différents. Les changements d"indicesk→k+p(translation)k→p-k(symétrie) sont les plus fréquents :n∑ k=1a k=n+p k=p+1a k-p=p-1 k=p-na p-k

Exemples :Calculer la somme :Sn=n∑

k=1?

1k-1k+1?

•On utilise la linéarité :Sn=n∑

k=11k-n∑ k=11k+1 •On effectue un changement d"indice sur la deuxième somme :k→k+1 : S n=n∑ k=11 k-n+1∑ k=21k. k=21k-n∑ k=21k-k=n+1? ???1 n+1=1-1n+1

Pourn?2, on considère la sommeSn=n+1∑

k=2k22k-1. Faire une translation d"indice pour que la nouvelle variable varieentre 0 et(n-1) et une symétrie d"indice pour que la nouvelle variable varie entre 2et(n+1). •Pour la translation, il suffit de faire :k→k-2, on a alors : S n=n-1∑ k=0(k+2)22(k+2)-1=n-1∑ k=0(k+2)22k+3 •Pour la symétrie, il faut déterminer le milieu :2+ (n+1)2=n+32. On effectue alors la symétriek→n+3-k, on a alors : S n=n+1∑ k=2(n+3-k)22(n+3-k)-1=n+1∑ k=2(n+3-k)22n+5-2k

PAUL MILAN3VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1.3 Sommes télescopiques

Théorème 1 :Sommes télescopiques

Soit une suite(an)une suite de nombres réels ou complexes, on a : ?n,p?N,p?n,n∑ k=p(ak+1-ak) =an+1-ap

Remarque :n∑

k=0(ak+1-ak) =an+1-a0etn∑ k=0(bk-bk+1) =b0-bn+1

Démonstration :On pose :Sn=n∑

k=p(ak+1-ak)

•On utilise la linéarité :Sn=n∑

k=pa k+1-n∑ k=pa k •On effectue un changement d"indice sur la première somme :k→k+1 S n=n+1∑ k=p+1a k-n∑ k=pa k •On sépare les termes différents :Sn=an+1+n∑ k=p+1a k-n∑ k=p+1a k-ap=an+1-ap Exemples :Lessommestélescopiquessontuneméthodetrèsefficacepourcalcu- ler la somme des termes d"une suite(un). Il s"agit de trouver une suite(vn)pour queun=vn+1-vn. Ce n"est bien sûr pas toujours possible malheureusement.

Calculer les sommes suivantes :

•Sn=n∑

k=11k(k+1): on décompose1k(k+1)en1k-1k+1 S n=n∑ k=11 k(k+1)=n∑ k=1?

1k-1k+1?

=1-1n+1.

•Rn=n∑

k=1k×k! : on décomposek×k! en(k+1)k!-k!= (k+1)!-k! R n=n∑ k=1k×k!=n∑ k=1[ (k+1)!-k!]= (n+1)!-1

•Tn=n∑

k=11k(k+1)(k+2) a k(k+1)-a(k+1)(k+2)=a(k+2)-akk(k+1)(k+2)=2ak(k+1)(k+2), on aa=12 T n=n∑ k=11 k(k+1)(k+2)=12n∑ k=1?

1k(k+1)-1(k+1)(k+2)?

1 2?

12-1(n+1)(n+2)?

n(n+3)

4(n+1)(n+2)

PAUL MILAN4VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1.4 Sommes à connaître

Théorème 2 :Somme des entiers, des carrés, des cubes Pour tout entier naturelnnon nul, on a les relations suivantes :

•S1(n) =n∑

k=1k=1+2+···+n=n(n+1)2

•S2(n) =n∑

k=1k2=1+4+···+n2=n(n+1)(2n+1)6

•S3(n) =n∑

k=1k3=1+8+···+n3=n2(n+1)24 Démonstration :La première formule a été démontré en première en ordon- nant la somme dans l"ordre croissant puis dans l"ordre décroissant. Les deux der- nières formules ont été démontré en terminale par récurrence. Mais les démons- trations directes sont possibles à l"aide de sommes télescopiques. On pourrait généraliser ces démonstration aux somme des puissancespième des entiers na- turels.

•S1(n), on utilise la sommen∑

k=1[(k+1)2-k2] = (n+1)2-1 n∑ k=1[(k+1)2-k2] =n∑ k=1(k2+2k+1-k2) =n∑ k=1(2k+1) =2n∑ k=1k+n∑ k=11=2S1(n) +n

On en déduit que :

2S1(n) +n= (n+1)2-1?S1(n) =(n+1)2-(n+1)

2=n(n+1)2

S2(n), on utilise la sommen∑

k=1[(k+1)3-k3] = (n+1)3-1 n∑ k=1[(k+1)3-k3] =n∑ k=1(k3+3k2+3k+1-k3) =n∑ k=1(3k2+3k+1) =3n∑ k=1k2+3n∑ k=1k+n∑ k=11=3S2(n) +3S1(n) +n

On en déduit que :

3S2(n)+3S1(n)+n= (n+1)3-1?3S2(n) =?(n+1)3-1-3S1(n)-n??

S 2=1 3? (n+1)3-3n(n+1)2-(n+1)? =2(n+1)3-3n(n+1)-2(n+1)6 (n+1)(2n2+4n+2-3n-2)

6=(n+1)(2n2+n)6=n(n+1)(2n+1)6

PAUL MILAN5VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

•S3(n), on utilise la sommen∑

k=1[(k+1)4-k4] = (n+1)4-1 n∑ k=1[(k+1)4-k4] =n∑ k=1(k4+4k3+6k2+4k+1-k4) =n∑ k=1(4k3+6k2+4k+1) =4n∑ k=1k3+6n∑ k=1k2+4n∑ k=1k+n∑ k=11=4S3(n) +6S2(n) +4S1(n)+n

On en déduit que :

4S3(n) +6S2(n) +4S1(n) +n= (n+1)4-1?

4S2(n) = (n+1)4-1-6S2(n)-4S1(n)-n

= (n+1)4-n(n+1)(2n+1)-2n(n+1)-(n+1) = (n+1)? (n+1)3-n(2n+1)-2n-1? = (n+1)(n3+3n2+3n+1-2n2-n-2n-1) = (n+1)(n3+n2) =n2(n+1)2

Théorème 3 :Somme géométrique

Pour tous naturelspetntels quep?n

et pour tout réel ou complexextel quex?=1, on a : n∑ k=pxk=xp×1-xn+1-p

1-x=premier terme×1-xNbre de termes1-x

Démonstration :PosonsSn=n∑

k=pxk.

•On utilise une somme télescopique :

S n-xSn=n∑ k=pxk-n∑ k=pxk+1=n∑ k=p(xk-xk+1) =xp-xn+1 •On factorise :Sn(1-x) =xp(1-xn+1-p)x?=1?Sn=xp×1-xn+1-p1-x

Exemple :S=n∑

k=32k=23×1-2n-2

1-2=23(2n-2-1) =2n+1-8

Théorème 4 :Factorisation standard

Pour tout naturelnet pour tous réels ou complexesaetb, on a : a n-bn= (a-b) n-1∑ k=0an-k-1bk= (a-b)(an-1+an-2b+···+abn-2+bn-1)quotesdbs_dbs4.pdfusesText_7