[PDF] Cours de probabilites et statistiques´



Previous PDF Next PDF







Cours de probabilites et statistiques´

A[B r¶eunion de A et B A ou B A\B intersection de A et B A et B Ac ou A compl¶ementaire de A ¶ev¶enement contraire de A A\B =; A et B disjoints A et B incompatibles 1 3 Probabilit¶e On se limite dans ce cours µa ¶etudier les univers d¶enombrables La probabilit¶e d’un ¶ev¶enement est une valeur num¶erique qui repr¶esente la



Probabilités et Statistiques: Quelques petits rappels

La probabilité objective d'un événement n'existe pas et n'est pas une grandeur mesurable Probabilité = mesure d'incertitude variant avec les circonstances et l'observateur => mesure subjective Contrainte: satisfaire aux axiomes du calcul des probabilités => permet de probabiliser des événements non reproductibles et non aléatoires



COMBINATOIRE PROBABILITES ET STATISTIQUES

et leur nombre se note An r = n (n − r) (11) Remarque Si n = r alors An r = Pn Exemple 8 Soient les 4 lettres a,b,c et d Alors: - abcd,bcda,acdb sont des permutations simples des 4 lettres - bd,cb,ca sont des arrangements simples de 2 lettres choisies parmi 4 Il y a P4 = 4 = 24 permutations des 4 lettres et A4 2 = 4



Math 04 : Probabilités et Statistiques

aux principes de base de la probabilité et statistique Support pédagogique 4 Il est mis à la disposition des étudiants un support pédagogique sur papier du Cours et des Travaux Dirigés (TD) Plateforme Elearning ( l’adresse vous sera transmise prochainement )



Résumé de sup : probabilités - PROBLEMES ET SOLUTIONS

Si A et B sont deux événements, CΩA est l’événement contraire de A, A∪B est la réunion de A et B, A∩B est l’intersection de A et B A et B sont incompatibles ssi A ∩B =∅ Si A ⊂ B, on dit que A implique B Un système complet d’événements est une famille (Ai)16i6n telle que ∀i 6= j, Ai ∩Aj =∅et [16i6n Ai =Ω 3



Chapitre 3 : Combinatoire, Probabilités

Cours et exercices : Philippe Leclère 1 Chapitre 3 : Combinatoire, Probabilités 1 Dénombrement 1 1 Introduction L’étude statistique nous conduit à étudier une population finie et parfaitement déterminée par rapport à un ou plusieurs paramètres Pour cela nous avons mis en



Statistique : Résumé de cours et méthodes 1 Vocabulaire

Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c’est l’ensemble étudié Individu : c’est un élément de la population Effectif total : c’est le nombre total d’individus Caractère : c’est la propriété étudiée



Probabilités – Terminale S

Probabilités – Terminale S 2 b Probabilités sur un ensemble fini Définition : Soit ΩΩΩΩ = {a 1, a 2, , a n} un ensemble fini on définit une loi de probabilité sur ΩΩΩΩ si on choisit des nombres p 1, p 2, , p n tels que, pour



COURS DE STATISTIQUES

problèmes de statistique Probabilités = théorie permettant de modéliser des phénomènes aléatoires Statistiques = repose sur l’observation de données issues d’un phénomène concret ¾Le rôle des probabilités est nul en statistique descriptive, prépondérant en statistique inférentielle



LOIS DE PROBABILITÉ USUELLES

Si les v a indépendantes X et Y suivent les lois normale N(0;1) et du Khi-Deux ˜2(n), alors pX Y=n suit la loi de Student T (n) Si les v a indépendantes X et Y suivent les lois du Khi-Deux ˜2(m) et ˜2(n), alors mX nY suit la loi de Fisher F(m;n)

[PDF] lois de probabilité pdf

[PDF] rappel mecanique des fluides

[PDF] jacques damour résumé

[PDF] formulaire mécanique des fluides

[PDF] histoire générale de l'afrique tome 2 pdf

[PDF] histoire de l'afrique noire joseph ki-zerbo pdf

[PDF] naissance de l'agriculture en mésopotamie

[PDF] cours svt terminale s pdf geologie

[PDF] l'invention de l'agriculture c'est pas sorcier

[PDF] agriculture biologique

[PDF] cours simple de thermodynamique

[PDF] histoire de l'agriculture pdf

[PDF] fiche résumé thermodynamique

[PDF] évolution de l'agriculture

[PDF] résumé thermodynamique mpsi

Stage ATSM - Ao^ut 2010

Cours de probabilit

´es et statistiques

A. Perrut

contact : Anne.Perrut@univ-lyon1.fr 2

Table des matiµeres

1 Le modµele probabiliste 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Trois autres lois discrµetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Loi de Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 Loi uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Loi d'une v.a. continue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Loi uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 La loi normale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 La loi exponentielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Fonction d'une v.a. continue . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Loi des grands nombres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Intervalles de con¯ance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3

4TABLE DES MATIµERES

5 Tests statistiques 47

5.1 Tests d'hypothµeses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Test d'ajustement du chi-deux . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B Tables statistiques 61

C.1 Variable quantitative discrµete . . . . . . . . . . . . . . . . . . . . . . . . . . 65 C.2 Variable quantitative continue . . . . . . . . . . . . . . . . . . . . . . . . . . 68 C.3 Variable qualitative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapitre 1

Le modµele probabiliste

1.1 Introduction

Exemples :

- l'enfant µa na^³tre sera une ¯lle, - Proportion :

P(A) =3

6 = 1=2. Alors

P(¯lle) = limn!+1k

n n mais cette limite a-t-elle un sens? - Opinion : pour que l'OL soit championne de France? Dans ce cas, on ne peut pas rejouer le m^eme subjectif. 5

6CHAPITRE 1. LE MODµELE PROBABILISTE

Exemples :

\Lyon ne gagne pas". chi®re pair", ieA=f2;4;6g. jcelui du second.

B: \on obtient pile au deuxiµeme lancer" est

B=f(f;p;f);(f;p;p);(p;p;f);(p;p;p)g

le nombre de \face" obtenus. Alors, =f0;1;2;3g. Le modµele est beaucoup plus simple, notations vocabulaire ensembliste vocabulaire probabiliste ensemble plein ensemble vide A sous-ensemble de !2A !appartient µaA

A½B

Ainclus dansB

AimpliqueB

A[B AouB A\B intersection deAetB AetB A cou A A\B=;

AetBdisjoints

AetBincompatibles

Exemple : soit =f0;1;2g. ConstruisonsP().

P() =n

;;f0g;f1g;f2g;f0;1g;f0;2g;f1;2g;o telle que : -P(A) =X -P() =X !2P(!) = 1

0.95 :Ava trµes probablement se produire.

4.0 : incorrect.

-2 : incorrect.

0.5 : une chance sur deux.

8CHAPITRE 1. LE MODµELE PROBABILISTE

faire quelques calculs :

1) SiAetBsont incompatibles,P(A[B) =P(A) +P(B).

2)P(Ac) = 1¡P(A).

3)P(;) = 0.

5)P(A[B) =P(A) +P(B)¡P(A\B).

2) CommeAetAcsont incompatibles,1 =P() =P(A[Ac) =P(A) +P(Ac).

3)P(;) = 1¡P(;c) = 1¡P() = 0.

P i2NA i´ =X i2NP(Ai) - axiome 3 :P() = 1

1 =P() =X

!2P(!) =X !2p=p£card()

D'oµup=P(!) =1

card()

P(A) =X

!2AP(!) =card(A) card() dire : - choisir, par

P(BjA) =P(A\B)

P(A) Utilisation 2 : QuandP(BjA)etP(A)sont faciles µa trouver, on peut obtenirP(A\B). Exemple 6Une urne contientrboules rouges etvboules vertes. On en tire deux, l'une =frouge;verteg £ frouge;verteg rouge".

P(A\B) =P(BjA)P(A) =r¡1

r+v¡1¢r r+v

P(B) =P(BjA)P(A) +P(BjAc)P(Ac)

10CHAPITRE 1. LE MODµELE PROBABILISTE

preuve : CommeA[Ac= ,P(B) =P(B\(A[Ac)) =P((B\A)[(B\Ac)). OrB\A

P(B) =P(B\A) +P(B\Ac)

On garde le m^eme formalisme.

P(B) =P(BjA)P(A) +P(BjAc)P(Ac)

r¡1 r+v¡1¢r r+v+r r+v¡1¢v r+v =r r+v (i)[i2IAi= (ii) lesAisont deux µa deux incompatibles : pour tousi6=j,Ai\Aj=;.

P(B) =X

i2IP(BjAi)P(Ai) dans l'ordre chronologique. Nous allons maintenant voir une formule µa remonter le temps...

1etP(B)>0. Alors,

P(AjB) =P(BjA)P(A)

P(BjA)P(A) +P(BjAc)P(Ac)

preuve :

P(AjB) =P(A\B)

P(B)=P(BjA)P(A)

P(B) i2I,

P(AijB) =P(BjAi)P(Ai)

P j2IP(BjAj)P(Aj) bleaux sur informatique. Les tableaux deAcomportent des fautes dans 5,2% des cas et ceux deBdans 6,7% des cas. On prend un tableau au hasard. Il comporte des fautes. T T

F=\ le tableau comporte des fautes".

P(TAjF) =P(FjTA)P(TA)

P(FjTA)P(TA) +P(FjTB)P(TB)

P(A\B) =P(A)P(B)

P(BjA) =P(B)()P(AjB) =P(A)()P(A\B) =P(A)P(B)

Proposition 14Soit =E£FoµuEest de cardinalnetFde cardinalp. Supposons que

P(!) =P((x;y)) =1

card() =1 np =PE(fxg)PF(fyg) =fP;Fg £ f1;:::;6g

12CHAPITRE 1. LE MODµELE PROBABILISTE

8!2; P(!) =1

card() = 1=12 P N³ (!1;:::;!N)´ =P(!1)¢¢¢P(!N) surN. Pourtant, le nombre de combinaisons dont la somme fait 12 est le m^eme que le nombre de combinaisons dont la somme fait 11. Alors?

1.6 Exercices

3) On tire trois cartes dans un jeu .

suppose que

P(A[B) = 7=8; P(A\B) = 1=4; P(A) = 3=8:

CalculerP(B),P(A\Bc),P(B\Ac).

ros impairs ont chacun la m^eme chance d'appara^³tre, chance qui est deux fois plus grande hasard, et l'on observe que les quatre places libres se suivent. Est-ce surprenant?

1.6. EXERCICES13

Exercice 6 {SoientM1,M2,M3trois personnes. La premiµereM1dispose d'une infor- la transmet µaM3. Malheureusement, µa chaque fois que l'information est transmise, il y a le bon message? Et siM3transmet l'information dont il dispose µa une quatriµeme personneM4, quelle est elle re»coit un vaccin? daire? Exercice 8 |Dans une usine, la machine A fabrique 60% des piµeces, dont 2% sont C? Exercice 9 |Dans une jardinerie : 25% des plantes ont moins d'un an, 60% ont de 1 µa 2 ans, 25% ont des °eurs jaunes, 60% ont des °eurs roses, 15% ont des °eurs jaunes et moins d'un an, 3% ont plus de 2 ans et n'ont ni °eurs jaunes, ni °eurs roses. 15% de celles qui ont de 1 µa 2 ans, ont des °eurs jaunes, 15% de celles qui ont de 1 µa 2 ans, n'ont ni

°eurs jaunes ni °eurs roses. On suppose que les °eurs ne peuvent pas ^etre µa la fois jaunes

et roses. On choisit une plante au hasard dans cette jardinerie.

14CHAPITRE 1. LE MODµELE PROBABILISTE

Exercice 10 |Deux chau®eurs de bus se relaient sur la m^eme ligne. Lors d'une grµeve, le premier a60%de chances de faire grµeve et le second80%. Pendant la prochaine grµeve, Exercice 11 |Une loterie comporte 500 billets dont deux seulement sont gagnants.

Chapitre 2

PPP PPF PFP FPP FFP FPF PFF FFF

valeur deX

3 2 2 2 1 1 1 0

k(valeur prise parX)

3 2 1 0

fPPPg fPPF,PFP,FPPg fPFF,FPF,FFPg fFFFg k(X=k) = 15 elle est ditecontinue(exemples : hauteur d'un arbre, distance de freinage d'une voiture souvent une formule, plut^ot qu'une liste. [X= 3] [X= 2] [X= 1] [X= 0] fPPPg fPPF,PFP,FPPg fPFF,FPF,FFPg fFFFg

1/8 3/8 3/8 1/8

F(x) =P[X·x]

Exemple :Xest le nombre de Face quand on lance trois fois une piµece. On a vu que la loi deXest P[X= 0] = 1=8; P[X= 1] =P[X= 2] = 3=8; P[X= 3] = 1=8

D'oµu,

F(x) =8

>>>>>:0six <0;

1=8si0·x <1;

4=8si1·x <2;

7=8si2·x <3;

1six¸3

1)Fest croissante,

3) lim x! ¡1F(x) = 0;limx!+1F(x) = 1

E[X] =X

kkP[X=k] oµu on somme sur toutes les valeurskque peut prendreX.

E[g(X)] =X

kg(k)P[X=k] preuve : observons queg(X) =yssiX=xavecg(x) =y. Ainsi,

P(g(X) =y) =X

x:g(x)=yP(X=x)

E(Y) =X

yyP(Y=y) =X yX x:g(x)=yg(x)P(X=x) =X xg(x)P(X=x)

Var(X) =Eh

(X¡E[X])2i =X k(k¡E[X])2P[X=k] =E[X2]¡E[X]2 k2X()jkjP(X=k)<1 sa valeur moyenneE[X]. Exemple 18: nous avons la loi du nombreXde PILE quand on lance trois fois une piµece.

E[X] =3X

k=0kP[X=k] = 3¢1 8 + 2¢3 8 + 1¢3 8 + 0¢1 8 =12 8 =3 2

Var(X) =E[X2]¡E[X]2=3X

k=0k

2P[X=k]¡E[X]2

= 3

2¢1

8 + 22¢3 8 + 12¢3 8 + 02¢1 8

¡µ3

2 2 3 4 nbr de PILE [X= 3] [X= 2] [X= 1] [X= 0]

0.125 0.375 0.375 0.125

0.2 0.6 0.1 0.1

partir de quelques observations.

P[X=i;Y=j] =P[X=i]P[Y=j]

P[(X;Y) = (i;j)] =P[X=i;Y=j].

touti2X(),

P[X=i] =X

j2Y()P[X=ijY=j]P[Y=j]

SoitZ=X+Y. Quelle est la loi deZ?

valeur que prendX, la valeur que prendYet la valeur deZ. XnY

1 2 3 4 5 6

1

2 3 4 5 6 7

2

3 4 5 6 7 8

3

4 5 6 7 8 9

4

5 6 7 8 9 10

5

6 7 8 9 10 11

6

7 8 9 10 11 12

pour tous1·i;j·6; P[X=i;Y=j] =P[X=i]P[Y=j] = 1=36

2] =P[Z= 12] = 1=36,P[Z= 3] =P[Z= 11] = 2=36,P[Z= 4] =P[Z= 10] = 3=36,

1·j·12.

P[Z=j] =6X

i=1P[Z=jjX=i]P[X=i] 1 6 6 X i=1P[X+Y=jjX=i] 1 6 6 X i=1P[Y=j¡ijX=i] 1 6 6 X i=1P[Y=j¡i] rappeler queP[Y=k] = 1=6seulement sikest dansf1;:::;6g. preuve : pour le premier point, il faut observer que X yP(X=x;Y=y) =P³ (X=x)\([y(Y=y))´ =P³ (X=x)\´ =P(X=x) et il vient

E[X+Y] =X

x;y(x+y)P(X=x;Y=y) X x;yxP(X=x;Y=y) +X x;yyP(X=x;Y=y) X xxP(X=x) +X yyP(Y=y) =E[X] +E[Y] Pour le second point, on montre tout d'abord queE(XY) =E(X)E(Y), la suite venant facilement. Ainsi,

E[XY] =X

x;yxyP(X=x;Y=y) X x;yxyP(X=x)P(Y=y) µX =E(X)E(Y)

P[Y= 1] =p; P[Y= 0] =q= 1¡p

Var(Y) =E[Y2]¡E[Y]2=E[Y]¡E[Y]2=p(1¡p).

conditions.

P(E) =q= 1¡p.

P(X=k) =µn

p k(1¡p)n¡kpour tout0·k·n oµu ¡n k¢=n! k!(n¡k)!.

P(!) =pk(1¡p)n¡k

Il en existe¡n

P(X=k) =X

!:X(!)=kP(!) = card(f!:X(!) =kg)pk(1¡p)n¡k µn p k(1¡p)n¡k np(1¡p). (preuve) AouB. Puis on le remet dans le lot et on recommence : on choisit µa nouveau un individu binomialeB(n;NA=N). loi binomialeB(4;p).

P(X= 0) =¡4

0¢q4=q4,

P(X= 1) =¡4

1¢p1q3= 4pq3,

P(X= 2) =¡4

2¢p2q2= 6p2q2,

P(X= 3) =¡4

3¢p3q1= 4p3q,

P(X= 4) =¡4

4¢p4=p4.

Pourp= 1=5, on obtient les va-

leurs :0 1 2 3 4

0.0 0.1 0.2 0.3 0.4

Loi binomiale pour n=4, p=1/5

valeurs de X probabilites

Voici d'autres exemples.

0 1 2 3 4 5

0.05 0.15 0.25

Loi binomiale pour n=5, p=0.5

valeurs de X probabilites

0 2 4 6 8 10

0.00 0.10 0.20

Loi binomiale pour n=10, p=0.5

valeurs de X probabilites

0 2 4 6 8 10

0.00 0.10 0.20 0.30

Loi binomiale pour n=10, p=0.2

valeurs de X probabilites

0 2 4 6 8 10

0.00 0.10 0.20 0.30

Loi binomiale pour n=10, p=0.8

valeurs de X probabilites X=nX i=1Y i

2.4. TROIS AUTRES LOIS DISCRµETES23

par le traitement?

P[X·6] =P[X= 0] +P[X= 1] +¢¢¢+P[X= 6]

1 2

15³

µ15

+µ15 +µ15 +µ15 +µ15 +µ15 +µ15 1 2

15(1 + 15 + 105 + 455 + 1365 + 3003 + 5005)

= 0:304 P[6·X·10] =P[X= 6] +P[X= 7] +P[X= 8] +P[X= 9] +P[X= 10] = 0:790 P[X¸12] =P[X= 12] +P[X= 13] +P[X= 14] +P[X= 15] = (455 + 105 + 15 + 1)=215 = 0:018

En¯n,E[X] = 15=2 = 7;5.

2.4 Trois autres lois discrµetes

8k= 1;2;::: P[Y=k] =p(1¡p)k¡1

preuve : admettons tout d'abord que, sur[0;1[, 1X k=0x 0 =1X k=0(xk)0=1X k=1kx k¡1 et

µ1X

k=0x 0 =µ1 0 =1 (1¡x)2

D'oµu, pourx= 1¡p,

E[Y] =1X

k=1kP[X=k] =p1X k=1k(1¡p)k¡1=p=p2= 1=p Un calcul analogue permet de calculer la variance (exercice).

2.4.2 Loi de Poisson

Cette loi est une approximation de la loi binomiale quandnpest petit etngrand (en

8k2N; P[X=k] = exp(¡¸)¸k

k! informatique pendant une minute, le nombre de globules rouges dans un ml de sang, le nombre d'accidents du travail dans une entreprise pendant un an... Dans le cas de l'approximation de la loi binomiale par la loi de Poisson, le paramµetre de la loi de Poisson est¸=np.

2.4.3 Loi uniforme

Mis µa part le prestige d^u µa son nom, la loi uniforme est la loi de l'absence d'information. valeur le m^eme poids :1=n. Et

8k= 1;:::;n; P[X=k] =1

n

On montre facilement que

E[X] =n+ 1

2 etVar(X) =(n+ 1)(n¡1) 12 P[X=¡1] = 0:2; P[X= 0] = 0:1; P[X= 4] = 0:3; P[X= 5] = 0:4quotesdbs_dbs44.pdfusesText_44