[PDF] Fonctions trigonométriques réciproques



Previous PDF Next PDF







LES FONCTIONS HYPERBOLIQUES ET LEURS RÉCIPROQUES FONCTIONS

LES FONCTIONS HYPERBOLIQUES ET LEURS RÉCIPROQUES 1 FONCTIONS HYPERBOLIQUES Toute application f : RR s’écrit, et d’une seule façon, sous la forme p+i avec p paire et i impaire Les applications p et i sont respectivement nommées partie paire et partie impaire de f Elles sont définies par : 8x 2R, 8 >> >< >> >: p ( x)= 1 2 f+ )) i(x



˘ˇ ˆ - melusineeuorg

Title: Microsoft Word - 13 Fonctions hyperboliques doc Author: Ismael Created Date: 4/8/2006 7:31:46



FORMULAIRE SUR LES FONCTIONS HYPERBOLIQUES

4 Expression de shx et thx en fonction de chx et de chx et cothx en fonction de shx : shx = p ch2x 1 chx = p sh2x+ 1 thx = r 1 1 cos2 x cotx = r 1 + 1 sin2 x 5 Relation avec l’exponentiel : chx+ shx = e xet chx shx = e 6 Formule de puissance : (chx+ shx)n = ch(nx) + sh(nx) pour tout n 2N 7 Formules d’addition :



1 Fonctions circulaires inverses - Exo7 : Cours et exercices

Fonctions circulaires et hyperboliques inverses Corrections de Léa Blanc-Centi 1 Fonctions circulaires inverses Exercice 1 Vérifier arcsinx+arccosx = p 2 et arctanx+arctan 1 x =sgn(x) p 2: Indication H Correction H Vidéo [000752] Exercice 2 Une statue de hauteur s est placée sur un piédestal de hauteur p 1 À quelle distance x



Fonctions circulaires et leurs réciproques

Fonctions circulaires et leurs réciproques En quoi les fonctions sinh et cosh sont-elles des analogues hyperboliques des fonctions sin et cos



Cours de mathématiques - Exo7 : Cours et exercices de

Fonctions hyperboliques et hyperboliques inverses Fiche d'exercices ⁄ Fonctions circulaires et hyperboliques inverses Vous connaissez déjà des fonctions classiques : exp,ln,cos,sin,tan Dans ce chapitre il s’agit d’ajouter à notre catalogue de nouvelles fonctions : ch, sh, th, arccos, arcsin, arctan, Argch, Argsh, Argth



Corrig e du DM 1 - logiquejussieufr

2 Montrer que les fonctions cosh et sinh sont equivalentes a la fonction x 7ex 2 en +1 3 Etudier les fonctions cosh, sinh et x 7ex 2 et tracer leurs graphes sur le m^eme dessin 4 On pose tanh(x) = sinh x coshx (tangente hyperbolique) et cothx = cosh sinhx (cotangente hyperbolique) Etudier les fonctions tanh et coth et les dessiner



Cours sur les fonctions usuelles

Cours sur les fonctions usuelles c Emmanuel Vieillard Baron, Table des mati`eres 1 Pr´eambule 1 2 Fonctions logarithmes, exponentielles et puissances 1



Fonctions trigonométriques réciproques

∀ y ∈ [-1 ;1], ∃ x ∈ r tel que sin(x) = y et cos(x) = y La fonction tangente définie de r- {x ∈ r⎮x = 2 π + kπ , k ∈ z } dans r est une application surjective par définition A condition de restreindre judicieusement leurs ensembles de définition, on peut définir des fonctions qui sont injectives et par conséquent



Tableaux des dérivées et primitives et quelques formules en

= 0 et lim x0+ x jlnxj = 0 lim x+1 e x x = +1 et lim x1 jxj e x= 0 Autrement dit, l’exponentielle impose toujours sa limite en 1 aux fonctions puissances, et celles-ci imposent toujours leur limites en 0+ ou +1au logarithme Fonctions circulaires réciproques On suppose connues les fonctions sinus et cosinus

[PDF] trigo hyperbolique

[PDF] lettre de motivation agence immobilière sans experience

[PDF] up and down tome 4

[PDF] ch(2x)

[PDF] up and down saison 4 pdf

[PDF] up and down saison 2 pdf ekladata

[PDF] up and down saison 2 ekladata

[PDF] limite tangente hyperbolique

[PDF] up and down tome 5

[PDF] ch(0)

[PDF] up and down entre deux pdf

[PDF] candidature définition

[PDF] je suis vivement intéressée par votre offre d'emploi

[PDF] phrase d'accroche lettre de motivation candidature spontanée

[PDF] pourquoi postulez vous pour ce poste

1

Fonctions trigonométriques réciproques

1 Définitions

Les fonctions sinus, cosinus définies de dans l'intervalle [-1 ;1] sont des applications surjectives par définition,

c'est à dire : y [-1 ;1], x tel que sin(x) = y et cos(x) = y .

La fonction tangente définie de - {x x =

2 + k , k } dans est une application surjective par définition .

A condition de restreindre judicieusement leurs ensembles de définition, on peut définir des fonctions qui sont

injectives et par conséquent bijectives. Pour la fonction sinus, on restreint son domaine de définition à l'intervalle [- 2 2 ] et on a : sin : [- 2 2 ] [-1 ;1] x sin(x) Alors cette fonction " sin " est bijective et on peut définir sa fonction réciproque appelée arc sinus ainsi : arcsin : [-1;1] [- 2 2 x arcsin(x) avec l'équivalence : y = arcsin(x) x = sin(y)

La représentation graphique

1 f d'une fonction f -1 réciproque d'une applicatio bijective est toujours symétrique de f par rapport à la bissectrice d du premier et troisième quadrant d'équation d : y = x . 1 f f 2 Pour la fonction cosinus, on restreint son domaine de définition à l'intervalle [0 ;] et on a : cos : [0 ;] [-1 ;1] x cos(x) Alors cette fonction "cos" est bijective et on peut définir sa fonction réciproque appelée arc cosinus ainsi : arccos : [-1;1] [0 ;] x arccos(x) avec l'équivalence : y = arccos(x) x = cos(y) Pour la fonction tangente, on restreint son domaine de définition à l'intervalle ]- 2 2 [ et on a : tan : ]- 2 2 x tan(x) Alors cette fonction "tan" est bijective et on peut définir sa fonction réciproque appelée arc tangente ainsi : arctan : ]- 2 2 x arctan(x) avec l'équivalence : y = arctan(x) x = tan(y)

Exemples : arcsin(1) =

2 , car sin( 2 ) = 1 arccos( 21
3 , car cos( 3 21
; arctan(-1) = - 4 , car tan(- 4 ) = -1

2 Remarques :

1) Soit f : A B une application bijective et f

-1 : B A sa réciproque avec y = f -1 (x) x = f(y) .

On a alors : f

of -1 = id B et f -1 of = id A , c'est à dire : xB , : fof -1 (x)= id B (x) = x et yA , : f -1 of(y)= id A (y) = y . Ainsi : x [-1 ;1] , sin[arcsin(x)] = x et cos[arccos(x)] = x y [- 2 2 ] , arcsin[sin(y)] = y et y [0 ;] , arccos[cos(y)] = y et x , tan[arctan(x)] = x y ]- 2 2 [ , arctan[tan(y)] = y .

2) On a aussi : x[-1 ;1] , arcsin(-x) = -arcsin(x) et x

, arctan(-x) = -arctan(x) ; les fonctions arcsin et arctan sont donc impaires.( car sin et tan sont impaires) preuve : y = arcsin(-x) -x = sin(y) x = -sin(y) x = sin(-y) -y = arcsin(x) y = -arcsin(x) y = cos(x) y = arctan(x) y = tan(x) y = arccos(x) 3

3 Dérivées

On a démontré le théorème de dérivation d'une fonction réciproque d'une application bijective :

Si f est une fonction bijective et continue sur un intervalle ouvert contenant y 0 et si f est dérivable en y 0 et si f '(y 0 ) 0 , alors la bijection réciproque f -1 est dérivable en x 0 = f(y 0 ) et on a (f -1 )'(x 0 )('f1 0 y.

En posant y = f

-1 (x) = arcsin(x) et x = f(y) = sin(y) on obtient : (f -1 )'(x) = [arcsin(x)]' = x- 1 1 * (x))cos(arcsin1 cosy1 (siny)'1 )y('f1 2 , x ]-1 ;1[ .(* cf. exercice 3a)

Exercices : démontrer que : [arccos(x)]' =

x- 1 1- 2 x ]-1 ;1[ et [arctan(x)]' = 2 x 1 1 , x . remarque : la fonction arcsin n'est pas dérivable en x = -1 et en x = 1 ; calculons f d (1) et f ' g (-1) : f d (1) =

01 x- 1 1 lim

21x
et f g (-1) =

01 x- 1 1 lim

21x
interprétation géométrique : les tangentes au graphique de la fonction arcsin en 1 x et en 1 x sont verticales : 4

4 Exercices

1) Démontrer : x [-1 ;1] , arcsin(x) + arccos(x) =

2

2) Calculer le domaine de définition des fonctions f

i définies par : a) y = f 1 (x) = arcsin

3 x21 x

b) y = f 2 (x) =

1xarctanx

2 c) y = f 3 (x) = arccos 2 x1x2

3) Démontrer :

a) x [-1 ;1] , cos[arcsin(x)] = x 1 2 et sin[arccos(x)] = x 1 2 b) x ]-1 ;1[ , tan[arcsin(x)] = x- 1 x 2 c) x [-1 ;1]-{0} , tan(arccos(x)] = x x- 1 2 d) x , sin[arctan(x)] = x 1 x 2 et cos[arctan(x)] = x 1 1 2

4) Calculer les dérivées des fonctions f

i définies par : a) y = f 1 (x) = arcsin (2x-3) b) y = f 2 (x) = arccos(x 2 c) y = f 3 (x) = arctan (3x 2 ) d) y = f 4 (x) = arctan x1x1

5) Calculer :

a) dx x11 2 b) dx xa1 22
( poser t = ax ) c) dx x 1 1 2 d) dx x 1 x 22
( poser t = arccos(x) x = cos(t) ) e) dx x 1 x 2 ( poser t = arctan(x) x = tan(t) ) f) dx arcsin(x) g) dx arccos(x) h) dx arccos(2x) i)quotesdbs_dbs10.pdfusesText_16