[PDF] ˘ˇ ˆ - melusineeuorg



Previous PDF Next PDF







Fonctions hyperboliques

A 2 Tangente hyperbolique Le fait que la fonction cosinus hyperbolique ne s’annule pas permet d’introduire la fonction suivante : A 2 1 D´efinition On appelle fonction tangente hyperbolique la fonction th : R → R,x 7→thx = shx chx = ex −e−x ex +e−x A 2 2 Remarques I La fonction th est impaire (puisque sh est impaire et ch est



FONCTIONS HYPERBOLIQUES 4 - univ-tlnfr

6 La fonction tangente hyperbolique () (): x x x x f sh x ee xythx ch x e e − − → − == = + \\ 6 La fonction ythx= ()est une fonction IMPAIRE Cette fonction est continue et définie sur \ et sa dérivée s'écrit : ()() 2 1 th x ' ch x = Relations importantes : ch x sh x22( )− ( )=1 ch x sh x e( )+ ( )= x ch x sh x e( )−=( ) −x 2



Chapitre IV Les Fonctions Hyperboliques

?On appelle cosinus hyperbolique la fonction : ch : R R t 7 et +e t 2?On appelle tangente hyperbolique la fonction : th : R R t 7 et e t et +e t Proposition 1 (Alg ebrique)? sh et th sont impaires, ch est paire ? Pour tout x 2 R, ch(x)2 sh(x)2 = 1 Remarque 1? Pour exprimer une formule de trigonom etrie hyperbolique, il su t de prendre



Calcul de développements limités

tangente hyperbolique tanh(x) par la méthode de l’équation différentielle 1 Montrer que tanh vérifie l’équation différentielle y0= 1 y2: 2 Donner les raisons pour lesquelles tanh admet un développement limité de la forme tanh(x) = x+ax3 +bx5 +cx7 +dx9 +x10" 1(x) où a, bcet dsont des constantes réelles et "



Exercices sur les fonctions cosinus hyperbolique, 6 sinus

Exercices sur les fonctions cosinus hyperbolique, sinus hyperbolique et tangente hyperbolique 1 Résoudre dans l’équation ch sh 32 2x x 2 Résoudre dans l’inéquation ch 2 ch 3 ch 4 ch 2 x x x x 3 Partie A Démontrer que, pour tout couple (x; y) de réels, on a les égalités suivantes : sh sh 2 sh ch 2 2



˘ˇ ˆ - melusineeuorg

Title: Microsoft Word - 13 Fonctions hyperboliques doc Author: Ismael Created Date: 4/8/2006 7:31:46



Université Paris 7 Premier semestre 2008-2009 L1 MASS

On définit les fonctions sinus hyperbolique, cosinus hyperbolique et tangente hyperbolique de R dans R respectivement par les formules sh(x) = ex−e− x 2, ch(x) = e +e −x 2 et th(x) = sh(x) ch(x) = e x−e− e x+e− a) Calculer les développements limités à l’ordre 3 en 0 de sh et ch



1 Fonctions usuelles - École Polytechnique

réciproque argth est appelée fonction argument tangente hyperbolique argth est impaire, définie et dérivable sur] −1,1[ De plus, ∀x ∈]−1,1[, argth x = 1 2 ln 1 +x 1 −x 1 2 Dérivées des fonctions usuelles Fonction Dérivée Ensemble de définition Ensemble de dérivabilité ex ex R idem ln(x) 1 x R ∗ + idem xα avec α 6



I Lire les symboles mathématiques

tanh (x) tangente hyperbolique x Fonctions trigonométriques hyperboliques réciproques: limite de f de x quand x tend vers moins l’infini égale grand l



Aide-mémoire TI-Nspire CAS

Aide-mémoire TI-Nspire CAS Philippe Fortin (Lycée Louis Barthou – Pau) / Roland Pomès (Lycée René Cassin – Bayonne) Vous trouverez dans les pages suivantes les listes des fonctions et des commandes de base regroupées

[PDF] up and down tome 5

[PDF] ch(0)

[PDF] up and down entre deux pdf

[PDF] candidature définition

[PDF] je suis vivement intéressée par votre offre d'emploi

[PDF] phrase d'accroche lettre de motivation candidature spontanée

[PDF] pourquoi postulez vous pour ce poste

[PDF] pourquoi avez vous choisi notre entreprise reponse

[PDF] lettre de motivation maison de retraite sans experience

[PDF] envoute moi ekladata

[PDF] mon expérience professionnelle m'a permis de développer

[PDF] mes expériences professionnelles m'ont permis d'acquérir

[PDF] m'a permis d'acquérir synonyme

[PDF] numéro rcs exemple

[PDF] cette expérience m'a permis d'acquérir des compétences en matière

ĕ (O,⃗i,⃗j)

xPR x=ex+e´x 2 x=ex´e´x 2 x=x x x‰0,x=x x

2x´2x= 1

xPR 2x´2x= (x´x)(x+x) =e´xex= 1 ()1(x) =x,xÑ+8x= +8,xÑ+8x x = +8,(0) = 0 RR e x= 1 +x+x2 2! +¨¨¨+xn n!+o(xn) e

´x= 1´x+x2

2! +¨¨¨+ (´1)nxn n!+o(xn) x=x+x3 3! +¨¨¨+x2p+1 (2p+ 1)!+o(x2p+2) ()1(x) =x,xÑ+8x= +8,xÑ+8x x = +8,(0) = 1

R+[1,+8[

0 x= 1 +x2 2! +¨¨¨+x2p (2p)!+o(x2p) (2= R+ R´ x´x=e´x x´x 0+8 %x=t y=ttPR %x=t y=t tPR

˛M (t,t),tPR tą0 2t´2t= 1

M(x,y)

tPR y=t ā 2t´2t= 1 x

2´y2= 1 x2=2t xą0x=t

x=x x=ex´e´x e x+e´x=e2x´1 e 2x+1 C8R ()1(x) =2x´2x

2x= 1´2x=1

2x xÑ+8x=xÑ+8e2x´1 e

2x+1= 1

R]´1,1[

0 x=x+ax3+bx5+o(x5) ()1(0) = 1

1x= 1 + 3ax2+ 5bx4+o(x4)

2x=x2(1 +ax3+o(x2))2=x2(1 + 2ax2+o(x2))

1´2x= 1´x2´2ax4+o(x2) = ()1(x)

%3a=´1

5b=´2a $

%a=´1 3 b=2 15 x=x´1 3 x3+2 15 x5+o(x5) ()1(x) =2x´2x

2x= 1´2x=´1

2x x=1 x+x=exx´x=e´x2x´2x= 1 (a+b) =aˆb+aˆb(a+b) =aˆb+aˆb aˆb+aˆb=1 4 ((ea+e´a)(eb+e´b) + (ea´e´a)(eb´e´b)) 1 4 1 4 (2ea+b+ 2e´a´b)=(a+b) (a+b) =a+b

1 +aˆb

(a+b) =aˆb+bˆa aˆb+bˆa=a+b

1 +aˆb

ĕ Ŀ ŀ aˆb

(2a) =2a+2a= 1 + 22a= 22a´1 (2a) = 2aˆa (2a) =2(a) 1 +2a

ĕ xPR t=x

2 x=1 +t2

1´t2x=2t

1´t2x=2t

1 +t2 (2a) =2a+2a=2a+2a

2a´2a=1+2a

1´2a 2a

ā (2a) x= 2a

(a+b) +(a´b) = 2aˆb (a+b)´(a´b) = 2aˆb (a+b) +(a´b) = 2aˆb (a+b)´(a´b) = 2aˆb %x=a+b y=a´b C8 @xPR,1(x) =1

1((x))=1

((x))=1 b

1 +2((x))

@xPR,1(x) =1 1 +x2 x"0x x,yPR y=xðñy=xðñey´e´y 2 =xðñe2y´2xey´1 = 0 x˘? 1 +x2 y=xðñey=x´a

1 +x2ey=x+a

1 +x2

ðñey=x+a

1 +x2

ðñy=(

x+a

1 +x2)

@xPR,x=( x+a

1 +x2)

C8 [0,+8[[1,+8[

C8]1,+8[

@xP]1,+8[,1(x) =1

1((x))=1

((x)loooomoooon

ą0)=1

b

2((x))´1

@xP]1,+8[,1(x) =1 x

2´1

2 =x e y+e´y 2 =xðñe2y+ 1´2xey= 0ðñey=x+a x

2´1ey=x´a

x

2´1

x+? x

2´1ěxě1x´?

x x

2´1)(x´?

x

2´1) = 1

yě0eyě1 e y=x+a x

2´1ey=x´a

x

2´1ðñey=x+a

x

2´1

ðñy=(

x+a x

2´1)

@xP[1,+8[,x=( x+a x

2´1)

]´1,1[ C8

1= +8,0 = 0,x"0x

@xP]´1,1[,1(x) =1

1(x)=1

1´2(x)=1

1´x2

e y+e´yĘ xP]´1,1[ 1

1´x2=1

1´xˆ1

1 +x=1

2 1

1´x+1

1 +x) xÞÑ1

1´x2 xÞÑ1

2 (|1 +x| ´|1´x|) @xP]´1,1[,1 2 (|1 +x| ´|1´x|) =1 2 |1 +x

1´x|=1

2 (1 +x

1´x)

xÞÑ1 2 (1 +x

1´x)

0 @xP]´1,1[,x=1 2 (1 +x

1´x)

@xPRz[´1,1],1(x) =1

1´x2

@xPRz[´1,1],x=1 2 |1 +x

1´x|+=1

2 (x+ 1 x´1)quotesdbs_dbs45.pdfusesText_45