[PDF] Conversion of Binary, Octal and Hexadecimal Numbers



Previous PDF Next PDF







Conversion of Binary, Octal and Hexadecimal Numbers

Conversion of Fractions Starting at the binary point, group the binary digits that lie to the right into groups of three or four 0 10111 2 = 0 101 110 = 0 56 8 0 10111 2 = 0 1011 1000 = 0 B8 16 Problems Convert the following Binary Octal Decimal Hex 10011010 2705 2705 3BC Binary Octal Decimal Hex 10011010 232 154 9A 10111000101 2705 1477 5C5



L’addition

La conversion binaire décimale ci-dessus se fait donc de manière aisé, il en ait de même pour la conversion décimale binaire, nous ne reviendrons pas sur la conversion de la partie entière par division successive par ‘’2’’ En ce qui concerne la partie fractionnaire, il suffit de la multiplier par ‘’2’’, la



Binary, Decimal, Hexadecimal Conversion Exercises http

Binary, Decimal, Hexadecimal Conversion Exercises Hex to decimal 1 0x5A – 90 2 0xCC – 204 3 0x97 – 151 4 0x40 – 64 5 0x07 – 7



Systèmes de numération, Codes et Arithmétique binaire

I 3 5 Conversion binaire réfléchi – binaire naturel: On note toujours par: (B k) N : le bit de rang k du nombre codé en binaire naturel; (B k) R : le bit de rang k du nombre codé en binaire réfléchi On reproduit le bit de poids le plus fort Comparer le bit de rang n+1 du binaire naturel à celui de rang n du binaire réfléchi:



ELECTRONIQUE NUMERIQUE - doria23

2 5 3 Conversion hexadécimal → binaire Cette conversion est très simple Chaque symbole hexadécimal est remplacé par son équivalent binaire de 4 bits Exemple : 9F3 16 à convertir en binaire 9 F 3 1001 1111 0011 9F3 16 = 100111110011 2 Exemple : AC1 3B 16 à convertir en binaire A C 1 3 B 1010 1100 0001 0011 1011



Partie I : Représentation de l’information

3 2 1 Conversion partie décimal -fractionnaire→binaire La partie entière est converti du décimal en binaire en utilisant la méthode de la division successive comme on vient de le voir, quand à a partie fractionnaire du nombre décimal, elle sera converti en partie fractionnaire binaire en utilisant une méthode de multiplication



Chapitre 1 Notions sur les systèmes de numérisation et les codes

Conversion du Binaire Naturel en Binaire Réfléchi On additionne sans retenue le nombre complété par un 0 avec lui-même, et on abandonne le bit de poids faible Exemple : 7 (111) BN, le nombre complété par un zéro : 1110 1001 111 1110 Donc 7 (100) BR Conversion du Binaire Réfléchi en Binaire Naturel



Codage de linformation

Lycée&Gustave&Eiffel& TS&–&ISN& TP&:&Codagedel’information& Pagen°5/12& 1 3 4–&Conversion&hexadécimal&vers&binaire& Exemple$ (& D& 7& E& )

[PDF] algorithme conversion base 10 en base 2

[PDF] algorithme conversion base 10 en base 16

[PDF] algorithme conversion decimal hexadecimal

[PDF] cours conversion d'énergie

[PDF] les formes d'énergie et leur transformation

[PDF] conversion d énergie pdf

[PDF] conversion d'énergie électrique

[PDF] conversion d'énergie cours 6eme

[PDF] l énergie et ses conversions 5ème

[PDF] conversion d'energie exercice

[PDF] convertir dixième de seconde en seconde

[PDF] exercice conversion temps 6eme

[PDF] conversion de temps tableau

[PDF] tableau de conversion temps microseconde

[PDF] taux de change annuel banque du canada

Conversion of Binary, Octal and

Hexadecimal Numbers

From Binary to Octal

Starting at the binary point and working left, separate the bits into groups of three and replace each group with the corresponding octal digit.

10001011

2 = 010 001 011 = 2138

From Binary to Hexadecimal

Starting at the binary point and working left, separate the bits into groups of four and replace each group with the corresponding hexadecimal digit.

10001011

2 = 1000 1011 = 8B16

From Octal to Binary

Replace each octal digit with the corresponding 3-bit binary string. 213

8 = 010 001 011 = 100010112

From Hexadecimal to Binary

Replace each hexadecimal digit with the corresponding 4-bit binary string. 8B

16 = 1000 1011 = 100010112

Conversion of Decimal Numbers

From Decimal to Binary

171234026912139128024022021MSDLSD

From Binary to Decimal

10001011

2 = 1´27 + 0´26 + 0´25 + 0´24 + 1´23 + 0´22 + 1´21 + 1´20 = 128 + 8 + 2 + 1139

10 = 100010112

Conversion of Fractions

Starting at the binary point, group the binary digits that lie to the right into groups of three or four.

0.10111

2 = 0.101 110 = 0.568

0.1011

2 = 0.1011 1000 = 0.B816

ProblemsConvert the following

BinaryOctalDecimalHex10011010

2705
2705
3BC

422833828270518

10=A

1699162705116

Add

111110011

+ 1 0 0 1+ 1 1 1 011000100001

Subtract

1100010011

- 1 1 1 1- 1 1 1 11001100

Multiply

normallyfor implementation - add the shifted multiplicands one at a time.

1110= 141110

* 1 1 0 1= 13* 1 1 0 111101110

0000+ 0 0 0 0 111001110

+ 1 1 1 0 + 1 1 1 0 101101101000110 + 1 1 1 0 10110110(8 bits)

Divide

1 1 0 1 1 1 0 1111)11000101|1101)1011001|

1 1 1 1 |1 1 0 1 |

1001101|100101|

1 1 1 1 |1 1 0 1 |

10001|1011|

0 0 0 0 |0 0 0 0 |

10001|1011

1 1 1 1 |10

1 0 0 1 1101)1111001|

1 1 0 1 |10001|

0 0 0 0 |10001|

0 0 0 0 |10001|

1 1 0 1 |100

Sign-Magnitude

0 = positive

1 = negative

n bit range = -(2n-1-1) to +(2n-1-1)

4 bits range = -7 to +7

2 possible representation of zero.

2's Complement

flip bits and add one. n bit range = -(2n-1) to +(2n-1-1)

4 bits range = -8 to +7

0 0 0 0= 0

0 0 0 1= 1

0 0 1 0= 2

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1= 7

1 0 0 0= -8

1 0 0 1= -7

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0= -2

1 1 1 1= -1

Example

1 1 1 0= 14

0 0 0 1flip bits

0 0 1 0add one WRONG this is not -14. Out of range. Need 5 bits

0 1 1 1 0= 14

1 0 0 0 1flip bits

1 0 0 1 0add one. This is -14.

Sign Extend

add 0 for positive numbers add 1 for negative numbers

Add 2's Complement

1110= -21110=-2

+ 1 1 0 1= -3+ 0 0 1 1= 3

11011ignore carry = -510001ignore carry = 1

Be careful of overflow errors. An addition overflow occurs whenever the sign of the sum if different from the signs of both operands. Ex.

0100= 41100=-4

+ 0 1 0 1= 5+ 1 0 1 1= -5

1001= -7 WRONG10111ignore carry = 7 WRONG

Multiply 2's Complement

1110= -21110=-2

* 1 1 0 1= -3* 0 0 1 1= 3

11111110sign extend to 8 bits11111110sign extend to 8 bits

+ 0 0 0 0 0 0 0+ 1 1 1 1 1 1 011111110111111010ignore carry = -6 + 1 1 1 1 1 0111110110ignore carry + 0 0 0 1 0negate -2 for sign bit100000110ignore carry = 6

10010= -14

* 1 0 0 1 1= -131111110010sign extend to 10 bits + 1 1 1 1 1 0 0 1 011111010110ignore carry + 0 0 0 0 0 0 0 01111010110 + 0 0 0 0 0 0 01111010110 + 0 0 1 1 1 0negate -14 for sign bit10010110110ignore carry = 182

Floating-Point Numbers

mantissa x (radix) exponent The floating-point representation always gives us more range and less precision than the fixed-point representation when using the SAME number of digits.11-bit excess

1023 charactsticMantissa

sign52-bit normalized fractionSign exponentMantissa signMantissa magnitude

8-bit excess-127

characteristicMantissa sign23-bit normalized fraction

General format

32-bit standard

64-bit standard

01126331910Implied binary point

Normalized fraction - the fraction always starts with a nonzero bit. e.g.

0.01 ... x 2e would be normalized to 0.1 ... x 2e-1

1.01 ... x 2e would be normalized to 0.101 ... x 2e+1

Since the only nonzero bit is 1, it is usually omitted in all computers today. Thus, the 23-bit normalized fraction in reality has 24 bits.

The exponent is represented in a biased form.

· If we take an m-bit exponent, there are 2m possible unsigned integer values. · Re-label these numbers: 0 to 2m-1 ® -2m-1 to 2m-1-1 by subtracting a constant value (or bias) of 2m-1 (or sometimes 2m-1-1). · Ex. using m=3, the bias = 23-1 = 4. Thus the series 0,1,2,3,4,5,6,7 becomes -4,-3,-2,-

1,0,1,2,3. Therefore, the true exponent -4 is represented by 0 in the bias form and -3 by

+1, etc.

· zero is represented by 0.0 ... x 20.

Ex. if n = 1010.1111, we normalize it to 0.10101111 x 24. The true exponent is +4. Using the

32-bit standard and a bias of 2m-1-1 = 28-1-1 = 127, the true exponent (+4) is stored as a biased

exponent of 4+127 = 131, or 10000011 in binary. Thus we have

0 | 1 0 0 0 0 0 1 1 | 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notice that the first 1 in the normalized fraction is omitted. The biased exponent representation is also called excess n, where n is 2m-1-1 (or 2m-1).quotesdbs_dbs8.pdfusesText_14