[PDF] Exo7 - Cours de mathématiques



Previous PDF Next PDF







Systèmes déquations (cours 3ème)

Résoudre le système suivant : 3 2 4 2 5 x y x y + = − + =− C'est un système de deux équations à deux inconnues : x et y Résolution par substitution : Elle consiste à isoler une inconnue à l'aide d'une des deux équations par exemple, en utilisant la 2 ème équation, on a : y x= −2 5 On remplace alors y par 2 5x − dans la 1



Résolution déquations avec Mathematica

ment résoudre des systèmes d'équations ou d'inéquations, en particulier polynomiales comme par exemple ⋯ N réduis Reduce x3 ⩵ 3-x, x, nombres réels Reals x⩵1 21341 Le système d'équations ou d'inéquations peut être littéral, par exemple Printed by Wolfram Mathematica Student Edition



Syst me d quations - Exercices de Brevet

système d'équations d'inconnues x et y b)Résoudre ce système , et donner le nombre des triangles et celui des rectangles Exercice 7 : Brevet des Collèges - Nancy-Metz - Sept 1991 La nouvelle pièce de 10 F a un diamètre de 23 mm et la précédente un diamètre de 26 mm En pesant 5 anciennes pièces et 4 nouvelles , on obtient 76 g



COURS 3ÈME FONCTIONS LINÉAIRE ET AFFINE AGE 1/7

Résoudre le système revient donc à déterminer le point d’intersection des droites : -D 1 d’équation y=-x+5 - et D 1 d’équation y=2x-1 La fonction x -x+5 a pour représentation graphique la droite D 1 d’équation y=-x+5 La fonction x 2x-1 a pour représentation graphique la droite D 2 d’équation y=2x-1



Notes et exercices du cours dÉquations Différentielles

bases du module d’équations différentielles enseigné en 3ème année licence mathé-matiques Il se partage équitablement en deux entrainements : Un entrainement basé sur les notions abstraites qui aide le lecteur à utiliser les théorèmes fondamentaux des équations différentielles



R solution dun probl me laide des quations

d’aujourd’hui, jamais égal au triple de l’âge de sa fille Nous pouvons cependant apporter une autre réponse Il y a 3 ans ( - 3 est négatif ), l’âge du père était égal au triple de l’âge de sa fille



Equations de droites - ac-noumeanc

on dit que a est le coefficient directeur de (d), et b l’ordonnée à l’origine Remarque : Une droite possède une infinité d’équation, mais une seule équation réduite Exercice 1 : Déterminer l’équation réduite de la droite (d) suivante : 12x – 4y + 14 = 0, et la représenter dans un repère



METHODES DE RESOLUTION EN ELEMENTS FINIS

3ème – 5ème semestre - une classe particulière de problèmes dont la formulation se fait à l’aide d’équations quasi- solution d’un système



Exo7 - Cours de mathématiques

10 Logique et raisonnements – « 2£3˘7 » – « Pour tout x2R, on a x2 ˚0 – « Pour tout z2C, on a jzj˘1 Si P est une assertion et Q est une autre assertion, nous allons définir de nouvelles assertions

[PDF] Aide techno cned 3eme 3ème Technologie

[PDF] Aide théorème de Thalès 2nde Mathématiques

[PDF] Aide théorème de Thales 4ème Mathématiques

[PDF] AIDE TPE ! 1ère Mathématiques

[PDF] Aide TPE cheveux 1ère SVT

[PDF] Aide TPE cheveux 3ème SVT

[PDF] Aide TPE pour première L 2nde Français

[PDF] Aide TPE sur le Toucher 1ère SVT

[PDF] Aide traduction 5ème Anglais

[PDF] Aide traduction d'une question Bac +2 Anglais

[PDF] Aide traduction français-allemand 6ème Allemand

[PDF] Aide traduction Français-Anglais 6ème Anglais

[PDF] Aide traduction svp 3ème Anglais

[PDF] aide urgence sur histoire des arts (anne frank) 3ème Français

[PDF] AIDE URGENCE SVP 2nde Mathématiques

Cours de mathématiques

Première annéeExo7

2

SommaireExo7

1Logique et raisonnements. ........................................9

1

L ogique

9 2

R aisonnements

14

2Ensembles et applications. ......................................19

1

Ensembles

20 2

Applications

23
3

Injection, surjection, bijection

25
4

Ensembles finis

29
5

R elationd"équivalence

36

3Nombres complexes. ............................................41

1

L esnombres comple xes

41
2 R acinescar rées,équation du second degr é 45
3

Ar gumentet trigonométrie

48
4

Nombres comple xeset géométrie

52

4Arithmétique. ...................................................55

1

Division euclidienne et pgcd

55
2

Théor èmede Bézout

59
3

Nombres premiers

63
4

Congruences

66

5Polynômes. ......................................................73

1

Définitions

73
2

Arithmétique des polynômes

76
3

R acined"un polynôme, factorisation

80
4

F ractionsrationnelles

85

6Groupes. ........................................................89

1

Gr oupe

89
2

Sous-gr oupes

94
3

Morphismes de gr oupes

96
4

L egr oupeZ/nZ.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5

L egr oupedes per mutationsSn.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7Les nombres réels. .............................................107

1

L "ensembledes nombres rationnels Q.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

2

P ropriétésde R.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3

Densité de QdansR.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4

Bor nesupérieure

116 3

4SOMMAIRE

8Les suites. ......................................................121

1

Définitions

121
2

Limites

124
3

Ex emplesremar quables

130
4

Théor èmede conver gence

135
5

Suites r écurrentes

140

9Limites et fonctions continues. .................................147

1

Notions de fonction

148
2

Limites

152
3

Continuité en un point

158
4

Continuité sur un inter valle

163
5

F onctionsmonotones et bijections

166

10Fonctions usuelles. .............................................173

1

L ogarithmeet e xponentielle

173
2

F onctionscirculaires inverses

177
3

F onctionshyperboliques et hyperboliques inverses

180

11Dérivée d"une fonction. .........................................185

1

Dérivée

186
2

Calcul des dérivées

189
3

Extremum local, théor èmede R olle

193
4

Théor èmedes accr oissementsfinis

197

12Zéros des fonctions. ............................................203

1

La dichotomie

203
2

La méthode de la sécante

208
3

La méthode de Newton

212

13Intégrales. .....................................................217

1

L "intégralede Riemann

219
2

P ropriétésde l"intégrale

225
3

P rimitived"une fonction

228
4 Intégration par par ties- Changement de variable 234
5

Intégration des fractions rationnelles

238

14Développements limités. .......................................243

1

F ormulesde T aylor

244
2 Développements limités au voisinage d"un point 250
3 Opérations sur les développements limités 253
4

Applications des développements limités

257

15Courbes paramétrées. ..........................................263

1

Notions de base

264
2

T angenteà une courbe paramétr ée

271
3

P ointssinguliers - Branches infinies

277
4

Plan d"étude d"une courbe paramétr ée

284
5

Courbes en polaires : théorie

291
6

Courbes en polaires : e xemples

298

SOMMAIRE5

16Systèmes linéaires. .............................................303

1 Intr oductionaux systèmes d"équations linéaires 303
2

Théorie des systèmes linéaires

307
3

R ésolutionpar la méthode du pivot de Gauss

310

17L"espace vectorielRn............................................317

1

V ecteursde Rn.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

2

Ex emplesd"applications linéaires

320
3

P ropriétésdes applications linéaires

326

18Matrices. .......................................................333

1

Définition

333
2

Multiplication de matrices

336
3

Inverse d"une matrice : définition

341
4

Inverse d"une matrice : calcul

343
5 Inverse d"une matrice : systèmes linéaires et matrices élémentaires 346
6 Matrices triangulaires, transposition, trace, matrices symétriques 353

19Espaces vectoriels. .............................................361

1

Espace vectoriel (début)

361
2

Espace vectoriel (fin)

365
3

Sous-espace vectoriel (début)

369
4

Sous-espace vectoriel (milieu)

373
5

Sous-espace vectoriel (fin)

376
6

Application linéaire (début)

383
7

Application linéaire (milieu)

385
8

Application linéaire (fin)

388

20Dimension finie. ................................................395

1

F amillelibre

395
2

F amillegénératrice

400
3 Base 402
4

Dimension d"un espace vectoriel

408
5

Dimension des sous-espaces vectoriels

413

21Matrices et applications linéaires. ...............................419

1

R angd"une famille de vecteurs

419
2

Applications linéaires en dimension finie

425
3

Matrice d"une application linéaire

432
4

Changement de bases

438

22Déterminants. ..................................................447

1

Déter minanten dimension 2et3.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

2

Définition du déter minant

451
3

P ropriétésdu déter minant

457
4

Calculs de déter minants

462
5

Applications des déter minants

466

6SOMMAIRE

Cours et exercices de maths

Logique &

Raisonnements

Ensembles &

Applications

Arithmétique

Nombres

complexesPolynômesEspaces vectoriels

Groupes

Systèmes

linéaires

Dimension finie

Matrices

Applications

linéaires

Déterminants

Droites et plans

Courbes pa-

ramétrés

Géométrie affine

et euclidienne

Nombres réels

Suites I

Fonctions

continues

Zéros de

fonctions

Dérivées

Trigonométrie

Fonctions

usuellesDéveloppements limités

Intégrales I

Intégrales II

Suites II

Équations

différentiellesLicence Creative Commons - BY-NC-SA - 3.0 FR

8SOMMAIRE

1 Logique et raisonnementsExo7

Quelques motivations

-Il est important d"avoir unlangage rigoureux. La langue française est souvent ambigüe. Prenons l"exemple de la conjonction "ou»; au restaurant "fromage ou dessert» signifie l"un ou l"autre mais pas les deux. Par contre si dans un jeu de carte on cherche "les as ou les

coeurs» alors il ne faut pas exclure l"as de coeur. Autre exemple : que répondre à la question

"As-tu10euros en poche?» si l"on dispose de 15 euros?

Il y a des notions difficiles à expliquer avec des mots : par exemple la continuité d"une fonction

est souvent expliquée par "on trace le graphe sans lever le crayon». Il est clair que c"est une

définition peu satisfaisante. Voici la définition mathématique de la continuité d"une fonction

f:I!Ren un pointx02I:

8"È09±È08x2I(jx¡x0jDZAE) jf(x)¡f(x0)jÇ").

C"est le but de ce chapitre de rendre cette ligne plus claire! C"est lalogique. Enfin les mathématiques tentent dedistinguer le vrai du faux. Parexemple "Est-ce qu"une augmentation de20%, puis de30%est plus intéressante qu"une augmentation de50%?». Vous

pouvez penser "oui» ou "non», mais pour en être sûr il faut suivre une démarche logique

qui mène à la conclusion. Cette démarche doit être convaincante pour vous mais aussi pour

les autres. On parle deraisonnement. Les mathématiques sont un langage pour s"exprimer rigoureusement, adapté aux phénomènes complexes, qui rend les calculs exacts et vérifiables. Le raisonnement est le moyen de valider - ou d"infirmer - une hypothèse et de l"expliquer à autrui. 1.

Logique

1.1.

Asser tions

Uneassertionest une phrase soit vraie, soit fausse, pas les deux en même temps.

Exemples :

-"Il pleut.» -"Je suis plus grand que toi.» -" 2Å2AE4 »

10Logique et raisonnements

-" 2£3AE7 » -"Pour toutx2R, on ax2Ê0.»

-"Pour toutz2C, on ajzjAE1.»SiPest une assertion etQest une autre assertion, nous allons définir de nouvelles assertions

quotesdbs_dbs45.pdfusesText_45