[PDF] Théorème de la bijection : exemples de rédaction



Previous PDF Next PDF







Mathématiques Tout-en-un ECS 2e année

Tout-en-un • ECS 2e année Cours et exercices corrigés Christian Gautier André Warusfel Serge Nicolas Professeur au lycée HENRI IV à Paris Bruno Caminade Professeur au lycée militaire de Saint-Cyr-l’École Sous la direction de Prépas commerciales et



Visa pour la prépa Maths - Dunod

VISA POUR LA PRÉPA Visa pour la prépa Maths 2016-2017 MPSI PCSI PTSI BCPST ECS Guillaume Connan 97821007476989-conan-lims indd 1 06/04/16 09:12



PRAGMATHIQUES Prépa Cours de maths et d’entretiens en prépa

Author: Moi Created Date: 6/30/2020 6:29:53 AM



MATHS ET INFORMATIQUE MPSI - PCSI - PTSI BCPST - ECS

visa pour la prÉpa 2018-2019 maths et informatique guillaume connan mpsi - pcsi - ptsi bcpst - ecs 9782100779550-fm indd 1 4/24/18 5:18 pm



Fichier extrait du document EM Lyon - Sujet de Math 2016, ECS

C Prépa Eco option E - sujets et (certains) corrigés des épreuves de Math 2016 C EM Lyon - Sujet de Math 2016, ECS et ECE C Ecricome 2016 (E/S/T) - Sujets et corrigés C Sujet 2015, E Math 1, ESSEC avec correction C ESSEC maths II ECE 2015 C Ecricome & BCE 2015 : sujets et corrigés de Math, ECE Lien vers le Doc 1569 revisermonconcours



MacroExercicesSupCorrige - maths-francefr

Title: MacroExercicesSupCorrige dvi Created Date: 1/24/2016 4:54:59 PM



Théorème de la bijection : exemples de rédaction

ECE1-B 2015-2016 Théorème de la bijection : exemples de rédaction Lebutdecetteficheestdefaireunpointsurlethéorèmedelabijection Après un retour sur l



Étude de la parité hommes-femmes dans les classes

5 En 20 ans, le pourcentage de femmes dans les classes de première année a diminué, passant de 30 en 1989 à 23 en 2009; le pourcentage de femmes, très faible, dans les classes de MP



Informatique Mpsi Pcsi Ptsi Tsi Tpc Mp Pc Pt Psi

Prépa PCSI, quelles difficultés? Probabilités : cours prépa HEC, BCPST, Maths Sup Python for Cpge-5-Les listes Mécanique (1/7) Cours Maths Sup 1 : Introduction, système de coordonnées (MPSI, PCSI, PTSI)DS 6 Informatique PCSI Les Filtres Cours Cinématique Prépa Module d'un nombre complexe Prépa (MPSI PCSI PTSI TSI BCPST ECS ECE

[PDF] programme prépa ecs culture générale

[PDF] controle sur la defense et la paix

[PDF] la vie démocratique

[PDF] eist collège 2016

[PDF] élasticité prix exercice corrigé

[PDF] cours d'électricité de base

[PDF] cours électricité de base

[PDF] cours schema electrique pdf

[PDF] symbole composant electrique industriel

[PDF] schema electrique industriel symbole

[PDF] schéma électrique industriel cours

[PDF] logiciel schema electrique industriel gratuit

[PDF] exercices schema electrique industriel

[PDF] electrostatique mpsi exercices corrigés

[PDF] exercice distribution linéique de charge

ECE1-B2015-2016Théorème de la bijection : exemples de rédaction Le but de cette fiche est de faire un point sur le théorème de la bijection. Après un retour sur l"énoncé et sa démonstration, on illustrera l"utilisation de ce théorème en agrégeant les questions rencontrées lors des DS de l"année

2013-2014. Cela devrait vous convaincre, je l"espère, qu"il n"est pas envisa-

geable de perdre des points sur ces questions (toujours les mêmes!).

I. L"énoncé général du théorème

Théorème 1.Théorème de la bijection

On considère une fonctionf:I!Rdéfinie sur unintervalleI.1)fcontinue surI,

2)fstrictement

croissante surI.=)a)f(I)est un intervalle, b)f:I!f(I)est bijective, c)f1:f(I)!Iest continue et strictement croissante surf(I).1)fcontinue surI,

2)fstrictement

décroissante surI.=)a)f(I)est un intervalle, b)f:I!f(I)est bijective, c)f1:f(I)!Iest continue et strictement décroissante surf(I).Démonstration.(Cas où fest strictement croissante) a)f(I)est un intervalle car image d"un intervalle par une fonction continue (c"est une des conséquences du TVI). b)La fonctionf:I!f(I)est surjective puisque son ensemble d"arrivée coïncide avec son image. De plus, commefest strictement croissante, elle est injective.

La fonctionfest donc bijective deIsurf(I).

c)Montrons quef1:f(I)!Iest aussi strictement monotone. Il s"agit de montrer :8(u1;u2)2(f(I))2; u1< u2)f1(u1)< f1(u2).

Soientu1etu2deux éléments def(I). Ainsi :

il existex12Itel queu1=f(x1), il existex22Itel queu2=f(x2). D"oùf1(u1) =f1(f(x1)) =x1etf1(u2) =f1(f(x2)) =x2. L"implication à montrer s"écrit donc :f(x1)< f(x2))x1< x2. On la démontre par contraposée : six1>x2alorsf(x1)>f(x2)carfest crois- sante. Le caractère continu def1, plus technique, n"est pas démontré ici.Remarque Le pointa)est une conséquence du TVI et est essentiel pour démontrer le caractère continu def1. Le théorème de la bijection est donc souvent présenté comme un corollaire du TVI. Toutefois, citer le TVI au lieu du théorème de la bijection sera considéré comme une erreur de rédaction : les hypothèses et résultats du théorème de la bijection sont plus précis. La démonstration du pointc)fait apparaître la propriété suivante. Pour toutx1,x2,éléments deDf:f(x1)< f()< f(x2)f

1strictement croissante==========)x1< < x2Évidemment, cette propriété est aussi vérifiée pour des inégalités larges.

Cette propriété donne aussi souvent lieu à des questions dans les concours.1 ECE1-B2015-2016II. L"énoncé adapté aux questions

Théorème 2.

On considère une fonctionf:I!Rdéfinie sur unintervalleI.1)fcontinue surI,

2)fstrictement

monotone surI.)Alors pour touty2f(I), l"équationy=f(x)admet uneuniquesolutionx2I.Démonstration.

C"est un corollaire direct du théorème

1 La fonctionf:I!f(I)est bijective. On en déduit que tout élément y2f(I)admet un unique antécédentxdans l"intervalleI.Remarque Les questions nécessitant ce théorème sont facilement repérables : " Montrer qu"il existe ununique2:::tel que ... » " Montrer que l"équationf(x) =:::admet uneuniquesolution dans ... » La rédaction correcte d"une telle question demande de la rigueur. Une erreur classique et lourdement pénalisée consiste à oublier de préciser les intervalles considérés (Ietf(I)). Le théorème suivant permet de préciser la nature de l"intervallef(I).

Théorème 3.

SoitIun intervalle d"extrémitésaetb(chacune pouvant être infinie). Soitf:I!Rune fonction continue et strictement monotone surI. a)Alorsf(I)est un intervalle d"extrémitéslimx!af(x)etlimx!bf(x). b)De plus, les intervallesIetf(I)sont de même nature : fermés (comme[1;2],[1;+1[,] 1;2]), ouverts (comme]1;2[,]1;+1[,] 1;2[), ou semi-ouverts (comme]1;2],[1;2[).Tableau récapitulatif. Le tableau suivant permet de faire un point sur les différents types d"inter- valles rencontrés.Nature de l"intervallef(I)ICasfstrictement croissante surICasfstrictement décroissante surI[a;b][f(a);f(b)][f(b);f(a)][a;b[[f(a);limx!bf(x)[]lim x!bf(x);f(a)]]a;b]]lim x!af(x);f(b)][f(b);limx!af(x)[]a;b[]lim x!af(x);limx!bf(x)[]lim x!bf(x);limx!af(x)[Remarque Les tableaux de variation constituent un outil de base dans la rédaction des questions s"appuyant sur le théorème de la bijection. Une fois établi, un tel tableau permet la lecture rapide : des intervallesIde stricte monotonie def, des intervallesf(I)correspondants. Nous considérerons dans les illustrations suivantes que les tableaux de varia- tions sont déjà réalisés. (en cas de doute, se référer aux corrigés précédemment fournis)2

ECE1-B2015-2016III. Illustration sur des exemples

III.1. Énoncé du DS1

Exercice 1

On considère la fonctionfdéfinie par :f(x) =x+ 1 +x1 + lnxx 2. Cette fonction estC1surDf=]0;+1[et son tableau de variation (com- plété avec les informations prouvées ci-dessous) est :x

Signe deg(x)Signe def0(x)Variations def0+1+

1+1+11

2 <0 01 2 a.Montrer que l"équationf(x) = 0admet une unique solution surDf.

On la notera.

b.Montrer que :12 < <1.

Démonstration.

a.On sait que :

1)fest continue sur]0;+1[,

2)fest strictement croissante sur]0;+1[.

De plus,f(]0;+1[) = ] limx!0+f(x);limx!+1f(x)[ = ] 1;+1[.

D"après le théorème de la bijection, la fonctionfréalise une bijection de]0;+1[dans] 1;+1[.

Or02] 1;+1[. On en déduit que l"équationf(x) = 0admet une unique solutionx2]0;+1[.b.On remarque que : f12 =12

4ln2<0,

f() = 0, f(1) = 2>0.

Ainsi on a :f12

< f()< f(1). Or, d"après le théorème de la bijection,f1:] 1;+1[!]0;+1[ est strictement croissante. En appliquantf1à l"inégalité précédente, on obtient :12 < <1.3

ECE1-B2015-2016III.2. Énoncé du DS5

Exercice 2

On considère la fonctionfdéfinie par :f(x) =(x+ 1)ln(x+ 1)x En posantf(0) = 1, on prolonge la fonctionfen une fonctionC1sur D f= [1;+1[(faire l"étude!). Son tableau de variation (complété avec les informations prouvées ci-dessous) est :x

Signe def0(x)Variations def10+1++

00+1+13

<24 >2 2 a.Démontrer qu"il existe un unique2[1;+1[tel quef() = 2. b.Montrer que :3< <4. (on donneln20;69etln51;61)

Démonstration.

a.On sait que :

1)fest continue sur[1;+1[,

2)fest strictement croissante sur[1;+1[.

De plus,f([1;+1[) = [f(1);limx!+1f(x)[ = [0;+1[.

D"après le théorème de la bijection, la fonctionfréalise une bijection de[1;+1[dans[0;+1[.

Or22[0;+1[. On en déduit que l"équationf(x) = 2admet une unique solutionx2[1;+1[.b.On remarque que : f(3) =4ln(4)3 =4ln(22)3 =8ln(2)3 <83

0;7 =5;63

<2, f() = 2, f(4) =5ln(5)4 >54

1;6 = 2.

Ainsi on a :f(3)< f()< f(4).

Or, d"après le théorème de la bijection,f1:[0;+1[![1;+1[ est strictement croissante. En appliquantf1à l"inégalité précédente, on obtient :3< <4.Remarque Le fait qu"une seule flèche (et pas 2!) soit dessinée dans le tableau de variation ne doit pas surprendre. En effet, on rappelle le résultat suivant (cfchapitre " Dérivabilité ») :f

0>0surIetf0ne s"annule qu"en

un nombre fini de points)fstrictement croissante surI4

ECE1-B2015-2016III.3. Énoncés du DS6

III.3.a) Énoncé de l"exercice 2

Exercice 3

Pour tout entier naturel non nuln, on définit la fonctionfnpar :

8x2R; fn(x) =11 +ex+n x

Cette fonction estC1surDf=Ret son tableau de variation (complété avec les informations prouvées ci-dessous) est :x

Signe def00n(x)Variations

def0nSigne def0n(x)Variations defn10+10+ nn 14 +n 14 +nnn

11+1+1

1n <0u n00 >0a.Montrer que l"équationfn(x) = 0possède une seule solution surR.

On noteuncette solution.

b.Montrer qu"on a :8n2N;1n < un<0.

Démonstration.

a.Soitn2N. On sait que :

1)fnest continue sur] 1;+1[,

2)fnest strictement croissante sur] 1;+1[.De plus,fn(] 1;+1[) = ] limx!1fn(x);limx!+1fn(x)[ = ]n;+1[.

D"après le théorème de la bijection, la fonctionfnréalise une bijection de] 1;+1[dans] 1;+1[.

Or02] 1;+1[. On en déduit que l"équationfn(x) = 0admet une unique solutionx2] 1;+1[. b.On remarque que : fn1n =11 +e1n

1 =e1n

1 +e1n

<0, fn(un) = 0, fn(0) =12 >0.

Ainsi on a :fn1n

< f n(un)< fn(0). Or, d"après le théorème de la bijection,f1n:] 1;+1[!] 1;+1[ est strictement croissante. En appliquantf1nà l"inégalité précédente, on obtient :1n < un<0.5 ECE1-B2015-2016III.3.b) Énoncés de l"exercice 3

Exercice 4

Soita >0. On considère la fonctionfdéfinie par :f(x) = exp[a(x1)].

A)Casoùa= 1.

Montrer que l"équationf(x) =xadmet une unique solution surR.

B)Casoùa >1.

a.Montrer que l"équationf(x) =xadmet deux solutions surR.

On noterar(a)la plus petite.

b.Montrer que :0< r(a)<1.Technique de démonstration. On souhaite trouver ici les solutions de l"équationf(x) =x. On ne peut appliquer directement le théorème de la bijection àf. On considère alors la fonctiong:x7!f(x)xde sorte que : f(x) =x,g(x) = 0Démonstration.On noteg:x7!f(x)x. A)Casoùa= 1. On a alors le tableau de variation suivant.x

Signe deg0(x)Variations deg11+10+

+1+100+1+1Ainsi,g(x) = 0admetx= 1comme unique solution. Il en est de même de l"équationf(x) =x.B)Casoùa >1. On a le tableau de variation suivant.x g

0(x)g11lnaa+10+

+1+1g(1lnaa )g(1lnaa )+1+10 e ar(a)01 0

On remarque que :

g 1lnaa =ea(lnaa 1lnaa =1a

1 +lnaa

<0 (cf corrigé du DS) a.Détaillons les éléments de ce tableau de variation.

Surl"intervalle] 1;1lnaa

On sait que :

1)gest continue sur] 1;1lnaa

2)gest strictement décroissante sur] 1;1lnaa

De plus :g(]1;1lnaa

[) = ]g(1lnaa );limx!1g(x)[ = ]g(1lnaa );+1[. D"après le théorème de la bijection, la fonctiongréalise une bijection de] 1;1lnaa [dans]g(1lnaa );+1[.

Or02]g(1lnaa

);+1[. On en déduit que l"équationg(x) = 0admet une unique solutionx2] 1;1lnaa L"équationf(x) =xadmet donc une unique solution sur]1;1lnaa [.6

ECE1-B2015-2016Surl"intervalle]1lnaa

;+1[.

On sait que :

1)gest continue sur]1lnaa

;+1[,

2)gest strictement croissante sur]1lnaa

;+1[.

De plus :g(]1lnaa

;+1[) = ]g(1lnaa );limx!+1g(x)[ = ]g(1lnaa );+1[. D"après le théorème de la bijection, la fonctiongréalise une bijection de]1lnaa ;+1[dans]g(1lnaa );+1[.

Or02]g(1lnaa

);+1[. On en déduit que l"équationg(x) = 0admet une unique solutionx2]1lnaa ;+1[. L"équationf(x) =xadmet donc une unique solution sur]1lnaa ;+1[. b.Notons tout d"abord que la plus petite solution def(x) =x, notéer(a) est dans l"intervalle]1;1lnaa [. On en déduit quer(a)<1lnaa <1.

D"autre part, on a :

g(0) =ea>0, g(r(a)) = 0.

Ainsi on a :g(r(a))< g(0).

Or, d"après le théorème de la bijection, la fonction g

1:]g(1lnaa

);+1[!] 1;1lnaa [est strictement décroissante. En appliquantg1à l"inégalité précédente, on obtient :0< r(a).

On en conclut :0< r(a)<1.Exercice 5

On considère la fonctionfdéfinie, pourx2[0;1]par :(x) =xex. Cette fonction estC1sur[0;1]et son tableau de variation est :x

Signe de0(x)Variations de01

00e 1e

1a.Montrer queréalise une bijection de[0;1]sur[0;1e

b.Montrer que sa fonction réciproque1est continue et strictement crois- sante sur[0;1e c.Dresser le tableau de variation de1.

Démonstration.

a.On sait que :

1)est continue sur[0;1],

2)est strictement croissante sur[0;1].

De plus,([0;1]) = [(0);(1)] = [0;1e

D"après le théorème de la bijection, la fonctionréalise une bijection de[0;1]dans[0;1e b.De plus, sa fonction réciproque1:[0;1e ]![0;1]est continue et strictement croissante sur[0;1e c.D"où le tableau de variation :x

Variations de10e

10011
7 ECE1-B2015-2016III.3.c) Énoncé du problème A

Exercice 6

On considère la fonctionfdéfinie par :f(x) =x3+ 5x1. Cette fonction polynomiale estC1surDf=Ret son tableau de variation (complété avec les informations prouvées ci-dessous) est :x

Signe def0(x)Variations def1+1+

11+1+10

1 01 2 13 8 a.Montrer que l"équationx3+ 5x1 = 0admet une unique solution dans

R. On notecette solution.

b.Établir que :0< <12

Démonstration.

a.On sait que :

1)fest continue sur] 1;+1[,

2)fest strictement croissante sur] 1;+1[.

De plus,f(] 1;+1[) = ] limx!1f(x);limx!+1f(x)[ = ] 1;+1[.

D"après le théorème de la bijection, la fonctionfréalise une bijection de] 1;+1[dans] 1;+1[.

Or02] 1;+1[. On en déduit que l"équationf(x) = 0admet une unique solutionx2] 1;+1[.b.On remarque que : f(0) =1<0, f() = 0, f12 =138 >0.

Ainsi on a :f(0)< f()< f12

Or, d"après le théorème de la bijection,f1:] 1;+1[!]0;+1[ est strictement croissante. En appliquantf1à l"inégalité précédente, on obtient :0< <12 .8quotesdbs_dbs19.pdfusesText_25