[PDF] Exercices de licence - univ-lillefr



Previous PDF Next PDF







Topologie

Exercice 54 [ 01153 ] [correction] Soient A et B deuxpartiesferméesd’unespacevectorielnormé E dedimension finie Onsuppose A ∪ B et A ∩ B connexespararcs,montrerque A et B sont



TD 4: Topologie - Max Planck Society

TD 4: Topologie Exercice 1 Pour chacun des sous-ensembles suivants de R2, indiquer s’il est ouvert, fermé, les deux ou aucun



1 Espaces m´etriques 1 Distance, boules, ouverts, ferm´es

Proposition 1 8 Les ouverts de (A,δ) sont exactement les ensembles O ∩ A ou` O est un ouvert de (E,d), c’est a dire les ”traces sur A” des ouverts de E Cette topologie de A s’appelle la ”topologie induite par E sur A”, ou plus simplement la ”topologie induite” Les ferm´es de (A,δ) sont exactement



TOPOLOGIE DE LA DROITE REELLE - Université Paris-Saclay

Remarquer que A est un ouvert de R et D est un ferm´e de R Ils sont a fortiori ouvert (resp ferm´e) dans E En revanche, B et C ne sont ni ouverts, ni ferm´es dans R Proposition 8 Soit E un sous-ensemble de R Une partie A ⊂ E est ouverte (resp ferm´ee) dans E si et seulement si il existe un ouvert U





Exercices de licence - univ-lillefr

Exercice 9 Udans N est dit ouvert s’il est stable par divisibilit´e, c a d tout diviseur de n∈ Uest encore dans U Montrer qu’on a d´efini ainsi une topologie sur N qui n’est pas la topologie discr`ete Exercice 10 On consid`ere dans N∗, la famille de progressions arithm´etiques P a,b= {a+bn/n∈ N∗},



Exo7 - Exercices de mathématiques

Topologie Exercices de Jean-Louis Rouget Retrouver aussi cette fiche sur www maths-france * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exercice 1 ** Montrer que la boule unité d’un espace vectoriel normé est un convexe de cet espace Correction H [005839] Exercice 2 *** I



Exo7 - Exercices de mathématiques

Exercice 13 Soit Rn considéré comme groupe additif muni de sa topologie usuelle Soit G un sous-groupe de Rn 1 On suppose que 0 est isolé dans G Montrer que tout point est isolé, que G est discret et fermé dans Rn On se restreint maintenant au cas n=1 2 Montrer qu’alors, G est soit f0g, soit de la forme aZ, a>0



Feuille d’exercices no 1 – Espaces métriques

3M260 – Topologie et calcul différentiel Université Pierre et Marie Curie Mathématiques Année 2016/2017 Feuille d’exercices no 1 – Espaces métriques Dans tout ce qui suit, si (X,d) est un espace métrique et qu’il n’y a pas d’ambiguïté sur le choix de X et d,



Corrigé de la feuille d’exercices no5

D n’est pas ouvert Dans toute boule de centre (0;0), qui est élément de D, il existe des éléments qui ne sont pas dans D, par exemple les éléments du type (0; p 2/n) 5 E n’est pas ouvert car son complémentaire, D, n’est pas fermé E n’est pas fermé car son complémentaire n’est pas ouvert 6

[PDF] adhérence cellulaire définition

[PDF] la communication intercellulaire

[PDF] adherence cellulaire cours

[PDF] les jonctions cellulaires pdf

[PDF] migration cellulaire

[PDF] la chanson de craonne analyse

[PDF] le son è exercices

[PDF] le son ai ei exercices

[PDF] son ai ei cp

[PDF] liste de mot en è

[PDF] mots où on entend e

[PDF] de l'adjectif au nom ce2

[PDF] de l'adjectif au nom

[PDF] souligne les adjectifs qualificatifs dans le texte

[PDF] texte avec adjectifs qualificatifs ce2

Exercices de licence

Les exercices sont de :

Corn´elia Drutu (alg`ebre et th´eorie des nombres)

Volker Mayer (topologie, analyse r´eelle)

Leonid Potyagailo (alg`ebre et g´eom´etrie)

Martine Queff´elec (analyse r´eelle, analyse complexe)

Les sujets d"examens sont de :

Anne-Marie Chollet (variable complexe : VC)

Gijs Tuynman (analyse r´eelle et complexe : AR et ARC)

Table des mati`eres2Table des mati`eres

I Topologie4

1 Notions de topologie I4

1.1 Rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Topologie g´en´erale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Adh´erence, int´erieur, fronti`ere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Espaces m´etriques, espaces vectoriels norm´es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Notions de topologie II8

2.1 Topologie s´epar´ee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Topologie induite, topologie produit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Fonctions continues surR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Continuit´e dans les espaces topologiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Topologie des espaces m´etriques, norm´es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Comparaison de topologies et de m´etriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Suites, limites et valeurs d"adh´erence, points d"accumulation et points isol´es . . . . . . . . . . . . . . . . . . . . . . . 14

3 Notions de topologie III15

3.1 Hom´eomorphisme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Dualit´e, isom´etrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Prolongement de fonctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 M´etrique de la convergence uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Th´eor`eme de Baire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Connexit´e18

4.1 Connexit´e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Connexit´e par arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Compacit´e21

5.1 Espaces topologiques compacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Compacit´e dans les espaces m´etriques, norm´es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

II Analyse r´eelle 27

6 Applications lin´eaires born´ees27

6.1 Applications lin´eaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Formes lin´eaires continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Espaces m´etriques complets, Banach29

7.1 Espaces m´etriques complets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.2 Espaces norm´es, Banach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Th´eor`eme du point fixe32

9 Applications uniform´ement continues34

9.1 Applications uniform´ement continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9.2´Equicontinuit´e, th´eor`eme d"Ascoli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10 Applications diff´erentiables37

10.1 Applications diff´erentiables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10.2 Th´eor`eme des accroissements finis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

11 Th´eor`eme d"inversion locale et des fonctions implicites 41

11.1 Th´eor`emes d"inversion; diff´eomorphismes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

11.2 Th´eor`eme des fonctions implicites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

11.3 Sous-vari´et´es deRn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

12 Diff´erentielles d"ordre sup´erieur, formule de Taylor, extremums 46

12.1 Diff´erentielles d"ordre sup´erieur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

12.2 Fonctions harmoniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

12.3 Formule de Taylor, extremums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

13 Equations diff´erentielles48

13.1 Equations diff´erentielles : rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

13.2 Solutions maximales d"´equations diff´erentielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

13.3 Th´eor`eme de Cauchy-Lipschitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

13.4 Syst`emes `a coefficients constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

13.5 R´esolvantes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

13.6 Divers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

III Alg`ebre et g´eom´etrie 57

Table des mati`eres314 G´en´eralit´es sur les groupes57

15 Groupes et actions59

16 Isom´etries euclidiennes60

17 G´eom´etrie diff´erentielle ´el´ementaire deRn62

18 G´eom´etrie et trigonom´etrie sph´erique62

19 Le groupe orthogonal et les quaternions63

20 G´eom´etrie projective I64

21 G´eom´etrie projective II : homographies deCP164

21.1 Applications conformes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

21.2 Propri´et´es des homographies deCP1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

22 G´eom´etrie et trigonom´etrie hyperbolique66

IV Analyse complexe 67

23 S´eries enti`eres67

24 Fonctions holomorphes69

25 Fonctions logarithmes et fonctions puissances71

26 Formule de Cauchy73

27 Cons´equences de la formule de Cauchy76

28 Singularit´es80

29 Int´egrales curvilignes82

30 Th´eor`eme des r´esidus84

31 Fonctions Zeta et autres...86

31.1 Divers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

31.2 Transformations deC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

V Alg`ebre et th´eorie des nombres 89

32 Groupes89

33 Sous-groupes, morphismes91

34 Groupes finis93

35 Anneaux, corps95

36 Polynˆomes97

37 Extension de corps99

38 Extension d"anneau100

VI Sujets d"examens 101

39 Examen AR janvier 1994101

40 Examen AR juin 1994102

41 Examen AR septembre 1994103

42 Examen AR janvier 1995104

43 Examen AR juin 1995105

44 Examen AR septembre 1995106

45 Examen AR juin 1996107

46 Examen ARC d´ecembre 1998108

1 Notions de topologie I447 Examen ARC janvier 1999110

48 Examen ARC septembre 1999111

49 Examen ARC novembre 1999112

50 Examen ARC janvier 2000114

51 Examen ARC septembre 2000115

52 Examen ARC d´ecembre 2000116

53 Examen ARC janvier 2001117

54 Examen ARC septembre 2001118

55 Examen VC janvier 96119

56 Examen VC avril 96120

57 Examen VC juin 96121

58 Examen VC septembre 96123

59 Examen VC janvier 98125

VII Corrections 127

Premi`ere partie

Topologie

1 Notions de topologie I

1.1 Rappels

Exercice 11. Rappeler les d´efinitions d"une borne sup´erieure (inf´erieure) d"un ensemble de nombres r´eels.

SiAetBsont deux ensembles born´es deR, comparer avec supA, infA, supBet infBles nombres suivants : (i) sup(A+B), (ii) sup(A?B), (iii) sup(A∩B), (iv) inf(A?B), (v) inf(A∩B).

2. Pourx?RnetA?Rnon d´efinitd(x,A) = infa?A||x-a||. Trouverd(0,R-Q),d(⎷2,Q),d(M,D) o`u

M= (x,y,z)?R3etDest la droite de vecteur unitaire (a,b,c).

3. PourA,B?Rnon d´efinitd(A,B) = infa?A,b?B||a-b||. Trouverd(A,B) lorsqueAest une branche de

l"hyperbole{(x,y)?R2;xy= 1}etBune asymptote.

4. On d´efinit diamA= supa,b?A||a-b||. Quel est diam([0,1]∩Q)? diam([0,1]∩R-Q)?

Exercice 2Montrer que tout ouvert deRest union d´enombrable d"intervalles ouverts deux `a deux disjoints.

(Indication :six?Oouvert, consid´ererJx=?des intervalles ouverts,?Oet?x). D´ecrire de mˆeme les

ouverts deRn.

Exercice 3On va montrer que l"ensembleDdes r´eels de la formep+q⎷2 o`upetqd´ecriventZ, est dense

dansR.

1. Remarquer queDest stable par addition et multiplication.

2. Posonsu=⎷2-1; montrer que pour tousa < b, on peut trouvern?1 tel que 0< un< b-a, puism

v´erifianta < mun< b.

En d´eduire le r´esultat.

1.2 Topologie g´en´erale

Exercice 41. SoitX={0,1}muni de la famille d"ouverts{∅,{0},X}. Cette topologie est-elle s´epar´ee?

2. SoitXun ensemble non vide. D´ecrire la topologie dont les singletons forment une base d"ouverts.

1 Notions de topologie I53. D´ecrire la topologie surRdont la famille des intervalles ferm´es forme une base d"ouverts; mˆeme question

avec les intervalles ouverts sym´etriques.

4. SoitXun ensemble infini. Montrer que la famille d"ensembles constitu´ee de l"ensemble vide et des parties

deXde compl´ementaire fini d´efinit une topologie surX. Exercice 5SoitXun espace topologique, etfune application quelconque deXdans un ensembleY. On dit

qu"une partieAdeYest ouverte, sif-1(A) est un ouvert deX. V´erifier qu"on a d´efini ainsi une topologie sur

Y.

Exercice 6Montrer qu"on peut construire surR? {∞}une topologie s´epar´ee en prenant comme ouverts, les

ouverts deRet les ensembles de la forme{x/|x|> a} ? {∞}o`uaest r´eel. Comment construire une topologie

s´epar´ee surR? {+∞} ? {-∞}?

Exercice 7SoitXun ensemble non vide et Σ une famille de parties deXstable par intersection finie et

contenantX. Montrer que la plus petite topologieTcontenant Σ (la topologie engendr´ee par Σ) est constitu´ee

des unions d"ensembles de Σ, ou, de fa¸con ´equivalente,

A? T ?? ?x?A?S?Σ ;x?S?A.

Montrer que l"on peut affaiblir l"hypoth`ese de stabilit´e par intersection finie en : (?)?S1,S2?Σ,?x?S1∩S2,?S3?Σ ;x?S3?S1∩S2.

Exercice 8SoitCl"ensemble des fonctions continues r´eelles sur [0,1]. Pour toutef?Cetε >0 on d´efinit

M(f,ε) ={g/?

1 0 |f-g|< ε}.

Montrer que la famille M des ensemblesM(f,ε) lorsquef?Cetε >0 est une base de topologie. Mˆeme

question avec la famille

U(f,ε) ={g/sup

x|f(x)-g(x)|< ε}.

Exercice 9UdansNest dit ouvert s"il est stable par divisibilit´e, c.a.d. tout diviseur den?Uest encore dans

U. Montrer qu"on a d´efini ainsi une topologie surNqui n"est pas la topologie discr`ete. Exercice 10On consid`ere dansN?, la famille de progressions arithm´etiques P a,b={a+bn/n?N?}, o`uaetbsont deux entiers premiers entre eux.

1. Montrer que l"intersection de deux telles progressions est soit vide, soit une progression arithm´etique de

mˆeme nature, plus pr´ecis´ement, P a,b∩Pa?,b?=Pα,β o`uαest le minimum de l"ensemblePa,b∩Pa?,b?, etβ= ppcm (b,b?).

2. En d´eduire que cette famille d"ensembles (en y adjoignant∅) forme une base de topologie surN?dont on

d´ecrira les ouverts.

3. Montrer que cette topologie est s´epar´ee.

1.3 Adh´erence, int´erieur, fronti`ere

Exercice 111. Montrer que siBest un ouvert de l"espace topologiqueXetA∩B=∅, alorsA∩B=∅,

mais queA∩Bn"est pas n´ecessairement vide.

2. Montrer `a l"aide d"exemples que l"´egalit´e?iAi=?iAin"a pas lieu en g´en´eral pour une infinit´e d"indices.

Exercice 12D´eterminer l"adh´erence et l"int´erieur des ensembles suivants : Q;R\Q;{(x,y)?R2/0< x <1,y= 0};{(x,y,z)?R3/ x= 0} {1n,n?1}; le cercle unit´e deR2. Exercice 13SiAest une partie de l"espace topologiqueX, on poseα(A) =◦Aetβ(A) =◦A.

1. Montrer queαetβsont des applications croissantes pour l"inclusion deP(X) dansP(X).

2. Montrer que siAest ouvert,A?α(A) et siAest ferm´e,β(A)?A. En d´eduire queα2=αetβ2=β.

1 Notions de topologie I63. ConstruireA?Rtel que les cinq ensembles :

A,A,◦A,α(A),β(A) soient tous distincts. Exercice 14D´eterminer l"adh´erence dansR2du graphe

G={(x,y)/y= sin1x,0< x?1}.

Exercice 15Dans un espace topologique, on d´efinit la fronti`ere d"une partieAcomme ´etant∂A=A\◦A.

1. Montrer que∂A=∂(Ac) et queA=∂A??Aferm´e d"int´erieur vide.

2. Montrer que∂(A) et∂(◦A) sont toutes deux incluses dans∂A, et donner un exemple o`u ces inclusions sont

strictes.

3. Montrer que∂(A?B)?∂A?∂B, et que l"inclusion peut ˆetre stricte; montrer qu"il y a ´egalit´e lorsqueA∩B=∅(´etablir◦A?B?◦A?◦B).

Montrer que

quotesdbs_dbs22.pdfusesText_28