[PDF] Fiche technique sur les limites - lyceedadultesfr



Previous PDF Next PDF







MPSI 12 septembre 2008

2 2 2 Limite a gauche D e nition 11 Soit f, fonction d e nie sur un intervalle I, sauf peut etre en a, avec a interieur a I La limite a gauche, de f en a est, si elle existe, la limite en a de la restriction



Limites par opération - Muriel Ney Home Page

Formulaire des limites Limites par opération ? indique une forme indéterminée ou indique que l’on décide en fonction du signe de l Remarques: • Lorsque le numérateur tend vers zéro et le dénominateur vers l’infini, le quotient tend vers zéro : 0+ ou 0-selon la règle des signes



CHAPITRE 4 : LIMITES

Conclusion: Limites à l’infini d’un polynôme, d’une fraction rationnelle En +∞ et en−∞, tout polynôme admet une limite, qui est celle de son monôme de plus haut degré



Développements limités usuels en 0 - H&K

8 Trigonométrie 0 π/6 π/4 π/3 π/2 sinx 0 √ 1/2 √ 2/2 √ 3/2 1 cosx 1 √ 3/2 √ 2/2 √ 1/2 0 tanx 0 1/ √ 3 1 √ 3 indéfini cotan x indéfini √ 3 1 1/ √ 3 0 II Fonctions réciproques des fonctions circulaires



Fiche technique sur les limites - lyceedadultesfr

Fiche technique sur les limites 1 Fonctions élémentaires Les résultats suivants font référence dans de très nombreuses situations 1 1 Limite en +1et 1 f(x) xn 1 xn p x 1 p x ln(x) ex lim x+1 f(x) +1 0 +1 0 +1 1 lim x1 f(x) n pair +1 n impair 1 0 non défini non défini non défini 0 1 2 Limite en 0 f(x) 1 xn p x ln(x) lim x0 x>0 f(x



Limites de la calculatrice - Texas Instruments

Limites de la calculatrice 1010 10 10 1010 10 10 R = = 10 10 10 10 = 1 1010 10 10 1010 10 10 S = = 10 10 10 = 1 Pour aller plus loin : Voici un autre exemple : 33 461 80 782 F = et G = 13 860 33 461 Dans ce cas, il est plus délicat de comparer facilement n peut passer par un produit en croix pour montrer que



Tableaux des dérivées et primitives et quelques formules en

leur limites en 0+ ou +1au logarithme Fonctions circulaires réciproques On suppose connues les fonctions sinus et cosinus



Lycée Blaise Pascal TSI 1 année - Free

fiche-limites-equivalents-usuels dvi Created Date: 9/27/2017 12:01:48 PM



Limites et dérivées de fonctions trigonométriques

Limites et dérivées de fonctions trigonométriques Révision fonctions trigonométriques Question 1 Localiser les points correspondants aux angles suivants sur le cercle trigonométrique a) ˇ 6 b) 5ˇ 6 c) 4ˇ 3 d) ˇ 4 e) 3ˇ 4 f) 5ˇ 2 g) 7ˇ 4 h) 6ˇ 5 Question 2 Évaluer et simplifier les expressions suivantes a)sin ˇ 2 b)cos 7ˇ 6 c



FONCTION LOGARITHME NEPERIEN - Maths & tiques

1 Yvan Monka – Académie de Strasbourg – www maths-et-tiques FONCTION LOGARITHME NEPERIEN En 1614, un mathématicien écossais, John Napier (1550 ; 1617) ci- contre, plus connu sous le nom francisé de Neper publie « Mirifici

[PDF] Limites remarquable

[PDF] FORMULAIRE #8211 RESUME #8211 MATHS en TERMINALE S - Math foru

[PDF] Limites remarquable

[PDF] Limites remarquable

[PDF] Lyon Gare de Vaise Belleville-sur-Saône 118 - Autocars

[PDF] Horaires de la ligne 3907

[PDF] Horaires de la ligne 3907

[PDF] Limsi / Cnrs

[PDF] CONTRATO DE APERTURA DE LINEA DE CREDITO REVOLUTIVA

[PDF] los archivos y la archivística: evolución histórica y - Conclanet

[PDF] Quelles sont les formules _bac pro - My BTS

[PDF] Chapitre 7 D´eterminants

[PDF] Modélisation de la distribution d 'un moteur ? arbre ? cames en tête

[PDF] INTRODUCTION À LA LINGUISTIQUE

[PDF] Lionel TARLET

Fiche technique sur les limites

1Fonctionsélémentaires

Les résultats suivants font référence dans de très nombreuses situations.

1.1Limiteen+1et1

f(x)x n1 x npx1pxln(x)e xlim x!+1f(x)+10+10+1+1lim x!1f(x)npair+1 nimpair10non défininon défininon défini0

1.2Limiteen0

f(x)1 x n1pxln(x)lim x!0x>0f(x)+1+11 lim x!0x<0f(x)npair+1 nimpair1non défininon défini2Asymptotesparallèlesauxaxes Résultat surfInterprétation géométrique sur la courbeCflim x!1f(x)=lLa droitey=lest asymptote horizontale àCflim

x!af(x)=1La droitex=aest asymptote verticale àCf3Opérationsurleslimitesetformesindéterminées

3.1Sommedefonctions

Sifa pour limitelll+11+1Siga pour limitel

0+11+111

alorsf+ga pour limitel+l0+11+11F. Ind.

Paul Milan 1 sur

3

Terminale ES

3.2Produitdefonctions

3.2Produitdefonctions

Sifa pour limitell,001

Siga pour limitel

0111
alorsfga pour limitell01*F. ind.1**Appliquer la règle des signes

3.3Quotientdefonctions

Sifa pour limitell,00l11

Siga pour limitel

0,0001l1

alors fg a pour limitel l

01*F. ind.01*F. ind.

*Appliquer la règle des signes

4Polynômesetlesfonctionsrationnelles

4.1Fonctionpolynôme

Théorème 1Un polynôme a même limite en+1et1que son monôme du plus haut degré.

Si P(x)=anxn+an1xn1++a1x+a0x0alors

lim Théorème 2Une fonction rationnelle a même limite en+1et1que son monôme du plus degré de son numérateur sur celui de son dénominateur.

Si f(x)=anxn+an1xn1++a1x+a0x0b

mxm+bm1xm1++b1x+b0x0alors lim x!+1f(x)=limx!+1a nxnb mxmetlimx!1f(x)=limx!1a nxnb mxmPaul Milan 2 sur3 Terminale ES

4.3Asymptoteoblique

4.3Asymptoteoblique

Théorème 3Dans une fonction rationnelle lorsque le degré du polynôme du numé- rateur est égale à celui de son dénominateur plus un, alors la représentation de cette fonctionCfadmet une asymptote oblique(D)en+1et1.

Soit f(x)=P(x)Q(x)et dP=dQ+1

Soit la droite(D)d"équation y=ax+b alorslimx!1[(f(x)(ax+b)]=05Fonctionslogarithmeetexponentielle

5.1Fonctionlogarithme

Comparaison de la fonction logarithme avec la fonction puissance en+1et en0.

En+1limx!+1ln(x)x

=0;limx!+1ln(x)x n=0

En0 limx!0x>0xln(x)=0;limx!0x>0x

nln(x)=0

5.2Fonctionexponentielle

Comparaison de la fonction exponentielle avec la fonction puissance en+1et en1.

En+1limx!+1e

xx = +1;limx!+1e xx n= +1 En 1limx!1xex=0;limx!1xnex=0Paul Milan 3 sur3 Terminale ESquotesdbs_dbs12.pdfusesText_18