[PDF] Optimisation dune fonction dune variable



Previous PDF Next PDF







Coercive Functions and Global Minimizers

Coercive Functions and Global Minimizers We now know how to prove that a critical point of a function f(x) is a global minimizer if the Hessian of f(x) is positive semide nite on all of R n (or a strict global minimizer if the Hessian



Optimisation dune fonction dune variable

Une fonction f est dite coercive sur R si « elle tend vers l’infini à l’infini » lim jxj+1 f(x) = +1 ou coercive sur un intervalle ouvert ]a;b[ si lim xa f(x) = +1et limb f(x) = +1 C Nazaret Optimisation



Government, coercive power and the perceived legitimacy of

fonction de cette analyse, nous suggérons une compréhension plus nuancée des effets du pouvoir coercitif du gouvernement sur la légitimité organisationnelle Introduction The question of how organizational legitimacy is acquired and maintained has long been of interest in the discipline of organizational studies Legitimacy is conferred on



The Method of Steepest Descent - USM

continuous and coercive and therefore has a global minimum f(x) It follows that the sequence fx kgis also bounded, for a coercive function cannot be bounded on an unbounded set By the Bolzano-Weierstrauss Theorem, fx kghas a convergent subsequence fx kp g, which can be shown to converge to a critical point of f(x) Intuitively, as x k+1 = x k



Explicit variational forms for the inverses of integral

Moreover, this bilinear form is coercive, i e , 1 ˇ Z m Z m log 1 j˝ 1tj 0(t) (˝) dtd˝ C k k2 e H =2(m);8 2He1=2(m): (18) This operator admits a second variational formulation which is 1 2ˇ Z m Z m (x)y)) t t(y) jx yj2 dxdy+ 1 ˇ Z m (x) t(x) 1 x2 dx= Z m ’(x) t(x)dx (19) for all 1t 2He=2(m), and the next expression is a norm on He1=2(m



Chapter 5 Convex Optimization in Function Space 51

Chapter 5 Convex Optimization in Function Space 5 1 Foundations of Convex Analysis Let V be a vector space over lR and k ¢ k: V lR be a norm on V We recall that (V;k¢k) is called a Banach space, if it is complete, i e ,



X-ENS PSI - 2012 un corrig e Pr eambule - AlloSchool

Quand f est coercive, le pr eambule montre que f est mi-nor ee et donc (f(x k)) l’est aussi C’est nalement une suite convergente par th eor eme de limite monotone Si, par l’absurde, la suite (x k) n’ etait pas born ee, on pourrait en extraire une suite (x ( )) telle que kx (k)k+1et on aurait alors f(x



MAGNETIC PROPERTIES OF SILICON ELECTRICAL STEELS AND ITS

Coercive force and losses during symmetric cycles at 0 01 Hz (including the eddy current component) are pre-sented in Table 2 On the basis of these results, the steels 2212 and 2412 were chosen for low temperature meas-urements, along with the steels M250-50A, 3413 and 3414 Table 2: Coercivity and losses at room temperature Losses at 0 01 Hz



1 Gradient-Based Optimization - Stanford University

1 3 Steepest Descent Method The steepest descent method uses the gradient vector at each point as the search direction for each iteration As mentioned previously, the gradient vector is orthogonal to the plane tangent

[PDF] les causes de l'avortement

[PDF] livre d optimisation pdf

[PDF] pdf avortement spontané

[PDF] cours et exercices corrigés d'optimisation pdf

[PDF] ivg médicamenteuse

[PDF] optimisation sous contrainte exercice corrigé

[PDF] role infirmier ivg

[PDF] bible quiz pdf

[PDF] la datation au carbone 14

[PDF] comment mettre en place une gestion des carrières

[PDF] gestion de carrière ppt

[PDF] gestion de carrière en entreprise

[PDF] prévision des ventes théorie et pratique pdf

[PDF] cours prévision des ventes pdf

[PDF] prévision des ventes exercices corrigés

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéOptimisation d"une fonction d"une variable

1ère année

E.N.S.T.B.B.

I.P.B.

Année Universitaire 2015-16

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéPlan

1Introduction

2Définition: minimum, maximum

3Propriétés

4Convexité

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéPlan

1Introduction

2Définition: minimum, maximum

3Propriétés

Existence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordre

4Convexité

Définition et propriétés d"une fonction convexe

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéOn s"intéresse ici à la recherche de minimum ou maximum d"une fonction réellef:IR!R.Lorsque l"on cherche x vérifiant

Minimiserf(x)

x2I on dit que l"on a un problème d"optimisation.

La f onctionfest

souvent appelée fonction objectif.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéOn s"intéresse ici à la recherche de minimum ou maximum d"une fonction réellef:IR!R.Lorsque l"on cherchex vérifiant

Minimiserf(x)

x2Ion dit que l"on a un problème d"optimisation.La f onctionfest souvent appelée fonction objectif.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéOn s"intéresse ici à la recherche de minimum ou maximum d"une fonction réellef:IR!R.Lorsque l"on cherchex vérifiant

Minimiserf(x)

x2Ion dit que l"on a un problème d"optimisation.La fonctionfest souvent appelée fonction objectif.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéOn s"intéresse ici à la recherche de minimum ou maximum d"une fonction réellef:IR!R.Lorsque l"on cherchex vérifiant

Minimiserf(x)

x2Ion dit que l"on a un problème d"optimisation.La fonctionfest souvent appelée fonction objectif.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéC. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéPlan

1Introduction

2Définition: minimum, maximum

3Propriétés

Existence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordre

4Convexité

Définition et propriétés d"une fonction convexe

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

Convexitéminimum global et local

Définition

Soit f une fonction définie sur I et x

2I.On dit que f admet un minimum (resp. maximum ) global

sur I au point x , si

8x2I f(x)f(x):

(resp: f(x)f(x))On dit que f admet un minimum (resp. maximum ) local au point x , s"il existe un intervalle ouvert JI contenant x tel que

8x2J f(x)f(x):

(resp: f(x)f(x))C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

Convexitéminimum global et local

Définition

Soit f une fonction définie sur I et x

2I.On dit que f admet un extremum en x

si et seulement si f admet un maximum ou un minimum en x .Si les inégalités des définitions précédentes sont strictes, on parle d"extremum (min ou max) strict.Remarque

Un extremum global est un extremum local.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

Convexité

Figure:la f onctionx7!x2présente un minimum global strict en 0.C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

Convexité-5

0 5 10

0.00.51.01.52.02.53.0

Maximum localMaximum global

Minimum local

Figure:

f onctionprésentant des maxim umsstr ictslocaux et globaux, un minimum local et des minima globaux non stricts sur[5;10]C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéFigure:f onctionprésentant des e xtremanon str icts.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordrePlan

1Introduction

2Définition: minimum, maximum

3Propriétés

Existence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordre

4Convexité

Définition et propriétés d"une fonction convexe

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordrePlan

1Introduction

2Définition: minimum, maximum

3Propriétés

Existence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordre

4Convexité

Définition et propriétés d"une fonction convexe

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordrethéorème de Weierstrass L"existence d"extrema n"est pas garantie pour toute fonction. Mais sur un intervalle fermé borné...Théorème Soient f une fonction définie sur un intervalle fermé borné I= [a;b]. Si f est continue, alors la fonction f est bornée et atteint ses bornes, autrement dit f admet un minimum et un maximum global sur I. A priori, ces extrema ne sont pas uniques (peuvent être atteints plusieurs fois sur I).

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreExistence Si la recherche d"un minimum ne se limite pas à un intervalle fermé borné, on a aussi le résultat suivant:Définition Une fonction f est dite coercive surRsi " elle tend vers l"infini à l"infini » limjxj!+1f(x) = +1 ou coercive sur un intervalle ouvert]a;b[si lim x!af(x) = +1etlimx!bf(x) = +1C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreSoit

un intervalle ouvert.Théorème

Toute fonction continue et coercive sur

atteint son minimum sur .C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordrePlan

1Introduction

2Définition: minimum, maximum

3Propriétés

Existence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordre

4Convexité

Définition et propriétés d"une fonction convexe

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreCondition d"optimalité du 1er ordre

Théorème

Si f est une fonction définie et dérivable sur un intervalle ouvert

I et si f admet en un point x

de I un extremum alors f

0(x) =0:C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreRemarque

La réciproque de ce théorème est fausse (la fonction x7!x3admet une dérivée nulle en0mais ce n"est pas un extremum).Si f

0(x) =0, on dit que xest un point critique de f. Les

extrema sur l"ouvert I sont à chercher parmi les points critiques.Si on cherche un extremum sur un intervalle fermé[a;b], on fera l"étude sur]a;b[ouvert puis on comparera à f(a)et f(b).C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreExemple

Soit la fonction f(x) =x2. SurRcette fonction présente un minimum en x=0, point où elle est dérivable de dérivée nulle.

Elle n"admet pas de maximum surR.

En revanche, si on s"intéresse à f sur I= [1;1]. D"après le théorème de W, la fonction admet un min et un max sur I. On étudie les extrema sur]1;1[puis on calcule f(1)et f(1).Le minimum est atteint en x=0et vaut0. Le maximum qui vaut1 est atteint en deux points x=1et x=1.C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreExemple

Soit la fonction f(x) =x2. SurRcette fonction présente un minimum en x=0, point où elle est dérivable de dérivée nulle.

Elle n"admet pas de maximum surR.En revanche, si on s"intéresse à f sur I= [1;1]. D"après le

théorème de W, la fonction admet un min et un max sur I.On étudie les extrema sur]1;1[puis on calcule f(1)et f(1).Le minimum est atteint en x=0et vaut0. Le maximum qui vaut1 est atteint en deux points x=1et x=1.C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreExemple

Soit la fonction f(x) =x2. SurRcette fonction présente un minimum en x=0, point où elle est dérivable de dérivée nulle.

Elle n"admet pas de maximum surR.En revanche, si on s"intéresse à f sur I= [1;1]. D"après le

théorème de W, la fonction admet un min et un max sur I.On étudie les extrema sur]1;1[puis on calcule f(1)et f(1).Le minimum est atteint en x=0et vaut0. Le maximum qui vaut1 est atteint en deux points x=1et x=1.C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreExemple

Soit la fonction f(x) =x2. SurRcette fonction présente un minimum en x=0, point où elle est dérivable de dérivée nulle.

Elle n"admet pas de maximum surR.En revanche, si on s"intéresse à f sur I= [1;1]. D"après le

théorème de W, la fonction admet un min et un max sur I.On étudie les extrema sur]1;1[puis on calcule f(1)et f(1).Le minimum est atteint en x=0et vaut0. Le maximum qui vaut1 est atteint en deux points x=1et x=1.C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreExemple

On peut aussi s"interesser à l"optimum d"une fonction non partout dérivable. Soit la fonction f(x) =pj1x2j. Cette fonction présente un maximum local en x=0, point où elle est dérivable de dérivée nulle et un minima qui vaut0en deux points x=1et x=1.

En1et1, elle n"est pas dérivable.

De plus, en x=0, le maximum est local car f tend vers+1 quand x tend vers l"infini.

En plusieurs dimensions ,les choses

seront au moins aussi délicates...on se contentera de l"étude de fonctions dérivables.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreExemple

On peut aussi s"interesser à l"optimum d"une fonction non partout dérivable. Soit la fonction f(x) =pj1x2j. Cette fonction présente un maximum local en x=0, point où elle est dérivable de dérivée

nulle et un minima qui vaut0en deux points x=1et x=1.En1et1, elle n"est pas dérivable.De plus, en x=0, le maximum est local car f tend vers+1

quand x tend vers l"infini.

En plusieurs dimensions ,les choses

seront au moins aussi délicates...on se contentera de l"étude de fonctions dérivables.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreExemple

On peut aussi s"interesser à l"optimum d"une fonction non partout dérivable. Soit la fonction f(x) =pj1x2j. Cette fonction présente un maximum local en x=0, point où elle est dérivable de dérivée

nulle et un minima qui vaut0en deux points x=1et x=1.En1et1, elle n"est pas dérivable.De plus, en x=0, le maximum est local car f tend vers+1

quand x tend vers l"infini.En plusieurs dimensions, les choses seront au moins aussi délicates...on se contentera de l"étude de fonctions dérivables.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreExemple

On peut aussi s"interesser à l"optimum d"une fonction non partout dérivable. Soit la fonction f(x) =pj1x2j. Cette fonction présente un maximum local en x=0, point où elle est dérivable de dérivée

nulle et un minima qui vaut0en deux points x=1et x=1.En1et1, elle n"est pas dérivable.De plus, en x=0, le maximum est local car f tend vers+1

quand x tend vers l"infini.En plusieurs dimensions, les choses seront au moins aussi délicates...on se contentera de l"étude de fonctions dérivables.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordre

Figure:f onctionprésentant deux minima str icten 1 et en 1 sans y

être dérivable.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordrePlan

1Introduction

2Définition: minimum, maximum

3Propriétés

Existence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordre

4Convexité

Définition et propriétés d"une fonction convexe

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreCondition d"optimalité du second ordre

Théorème

Soit f une fonction deux fois dérivable sur un intervalle ouvert I et x

2I un point critique de f. Alors :Si f"(x)>0, f présente en xun minimum local strict.Si f"(x)<0, f présente en xun maximum local strict.Si f"(x) =0, on ne peut rien dire.C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéDéfinition et propriétés d"une fonction convexe Plan

1Introduction

2Définition: minimum, maximum

3Propriétés

Existence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordre

4Convexité

Définition et propriétés d"une fonction convexe

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéDéfinition et propriétés d"une fonction convexe Plan

1Introduction

quotesdbs_dbs9.pdfusesText_15