[PDF] U C B L Licence Sciences, Technologies, Santé



Previous PDF Next PDF







ALGEBRE LINEAIRE Cours et exercices

Cours d’algèbre linéaire 1 Espaces vectoriels 2 Applications linéaires 3 Matrices 4 Déterminants 5 Diagonalisation



L2 Math ematiques Math ematiques: ALGEBRE LINEAIRE II Cours

Si toute matrice carr ee complexe est trigonalisable, ceci n’est pas vrai pour les matrices r eelles Ceci signi e qu’il n’existe pas toujours une matrice triangulaire r eelle semblable a la matrice r eele donn ee, la matrice de passage devant ^etre aussi r eelle Prenons par exemple la matrice M= 0 1 1 0 :



Exercices dalgèbre linéaire

d’algèbre linéaire, choisis pour leur consistance plus que pour leur difficulté Ils sont groupés par thèmes, mais cette classification est approximative, et les solutions proposées supposent connu tout le cours d’algèbre linéaire Les corrigés mettent en lumière la pluralité des points de vue et des méthodes de résolution



Exercices dAlgèbre

matrice dont les vecteurs colonnes sont orthogonaux deux à deux et de norme 1 ? Une base orthonormale pour un produit scalaire donné est orthogonale pour tous les autres produits scalaires FAUX Prenons par exemple 21 13 = M C’est une matrice symétrique dont les valeurs propres sont 1 et 4 : c’est la matrice d’un produit scalaire



Exo7 - Cours de mathématiques

La seconde partie est entièrement consacrée à l’algèbre linéaire C’est un domaine totalement nouveau pour vous et très riche, qui recouvre la notion de matrice et d’espace vectoriel Ces concepts, à la fois profonds et utiles, demandent du temps et du travail pour être bien compris



جامعة وهران للعلوم و التكنولوجيا محمد بوضياف – Université des

5 Notion d’Application Linéaire 48 6 Exercices Corrigés 51 Chapitre 6 Notion de Matrice Associée à une Application Linéaire et Calcul Algébrique sur les Matrices avec Exercices Corrigés 57 1 Espace vectoriel des matrices 57 2 Produit de deux matrices 59 3 Matrices carrées 60 4 Les Déterminants 61 5



U C B L Licence Sciences, Technologies, Santé

UNIVERSITÉ CLAUDE BERNARD LYON 1 Licence Sciences, Technologies, Santé Enseignement de mathématiques des parcours Informatique ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE



I MATRICES, ENDOMORPHISMES ET DETERMINANTS

10 D eterminant d’une matrice 11 Calcul et d eveloppements d’un d eterminant 12 EXERCICES II REDUCTION DES ENDOMORPHISMES 13 Valeurs propres, vecteurs propres 14 Endomorphismes diagonalisables 15 Polynome caract eristique d’une matrice carr ee 16 Polynome caract eristique d’un endomorphisme 17 Polynomes 18

[PDF] algèbre linéaire pdf PDF Cours,Exercices ,Examens

[PDF] algèbre linéaire pour les nuls PDF Cours,Exercices ,Examens

[PDF] algèbre linéaire pour les nuls pdf PDF Cours,Exercices ,Examens

[PDF] Algèbre linéaire Sous-espace Bac +3 Mathématiques

[PDF] Algebre lineaire: Polynomes de degré < 4 + Calcul vectoriel Bac Mathématiques

[PDF] algebre mathématique PDF Cours,Exercices ,Examens

[PDF] algebre pdf PDF Cours,Exercices ,Examens

[PDF] algebre polynome exercice corrigé PDF Cours,Exercices ,Examens

[PDF] algèbre pour les nuls PDF Cours,Exercices ,Examens

[PDF] algébre sur les nombres relatifs 4ème Mathématiques

[PDF] algebre trigonometrie niveau bac PDF Cours,Exercices ,Examens

[PDF] Algèbre, Dérivation Bac Mathématiques

[PDF] Algébre, puissance 3ème Mathématiques

[PDF] Algebre, racine carrée 3ème Mathématiques

[PDF] Algébres 2nde Mathématiques

UNIVERSITÉCLAUDEBERNARDLYON1

Licence Sciences, Technologies, Santé

Enseignement de mathématiques

des parcours Informatique

ANALYSE MATRICIELLE

ET ALGÈBRE LINÉAIREAPPLIQUÉE

- Notes de cours et de travaux dirigés -

PHILIPPEMALBOS

1. Ensembles et applications . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Les corps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

3. Les anneaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

4. Les polynômes à une indéterminée . . . . . . . . . . . . . . . . . . . .

9

5. Arithmétique des polynômes . . . . . . . . . . . . . . . . . . . . . . .

12

6. Les fractions rationnelles . . . . . . . . . . . . . . . . . . . . . . . . .

19

1. La structure d"espace vectoriel . . . . . . . . . . . . . . . . . . . . . .

1

2. Bases et dimension d"un espace vectoriel . . . . . . . . . . . . . . . .

5

3. Somme de sous-espaces vectoriels . . . . . . . . . . . . . . . . . . . .

7

4. Les applications linéaires . . . . . . . . . . . . . . . . . . . . . . . . .

9

5. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

1. Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Produit de matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

3. Matrice d"une application linéaire . . . . . . . . . . . . . . . . . . . .

10

4. Trace d"une matrice . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

5. Noyau et image d"une matrice . . . . . . . . . . . . . . . . . . . . . .

15

6. Le rang d"une matrice . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

7. Opérations matricielles par blocs . . . . . . . . . . . . . . . . . . . . .

18

8. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

1. Définition récursive du déterminant . . . . . . . . . . . . . . . . . . .

1

2. Premières propriétés du déterminant . . . . . . . . . . . . . . . . . . .

3

3. Les formules de Cramer . . . . . . . . . . . . . . . . . . . . . . . . . .

8

4. Formulation explicite du déterminant . . . . . . . . . . . . . . . . . . .

10 1

2Table des matières

5. Calcul des déterminants . . . . . . . . . . . . . . . . . . . . . . . . . .

12

6. Calcul de l"inverse d"une matrice . . . . . . . . . . . . . . . . . . . . .

15

7. Déterminant d"un endomorphisme . . . . . . . . . . . . . . . . . . . .

17

8. Annexe : rappels sur les groupes de symétries . . . . . . . . . . . . . .

18

9. Annexe : déterminants et formes multilinéaires alternées . . . . . . . .

20

1. Équations d"évolution linéaire couplées . . . . . . . . . . . . . . . . .

1

2. Le découplage de système d"équations . . . . . . . . . . . . . . . . . .

5

3. La diagonalisation des matrices et des endomorphismes . . . . . . . . .

8

4. Marches sur un graphe et diagonalisation . . . . . . . . . . . . . . . .

11

5. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

1. Préliminaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Valeurs propres et espaces propres . . . . . . . . . . . . . . . . . . . .

5

3. Calcul des valeurs propres . . . . . . . . . . . . . . . . . . . . . . . .

9

4. Le cas des endomorphismes . . . . . . . . . . . . . . . . . . . . . . .

11

5. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

1. Trigonalisation des matrices . . . . . . . . . . . . . . . . . . . . . . .

1

2. Diagonalisation des matrices . . . . . . . . . . . . . . . . . . . . . . .

9

3. Une obstruction au caractère diagonalisable . . . . . . . . . . . . . . .

12

4. Caractérisation des matrices diagonalisables . . . . . . . . . . . . . . .

15

5. Matrices diagonalisables : premières applications . . . . . . . . . . . .

17

6. Trigonalisation et diagonalisation des endomorphismes . . . . . . . . .

20

7. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

1. Préliminaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Polynômes de matrices . . . . . . . . . . . . . . . . . . . . . . . . . .

3

3. Le lemme de décomposition en noyaux . . . . . . . . . . . . . . . . .

6

4. Le polynôme minimal . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

5. Le théorème de Cayley-Hamilton . . . . . . . . . . . . . . . . . . . . .

14

6. Le cas des endomorphismes . . . . . . . . . . . . . . . . . . . . . . .

21

7. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

1. Préliminaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. Matrices nilpotentes . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

3. Les espaces spectraux . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

4. Décomposition spectrale géométrique . . . . . . . . . . . . . . . . . .

7

Table des matières1

5. Décomposition spectrale algébrique . . . . . . . . . . . . . . . . . . .

10

6. Calcul de la décomposition spectrale algébrique . . . . . . . . . . . . .

15

7. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

1. Calcul des puissances d"une matrice . . . . . . . . . . . . . . . . . . .

1

2. La fonction exponentielle . . . . . . . . . . . . . . . . . . . . . . . . .

4

3. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

1. Les suites récurrentes . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2. La suite de Fibonacci (1202) . . . . . . . . . . . . . . . . . . . . . . .

3

3. Dynamique de populations . . . . . . . . . . . . . . . . . . . . . . . .

4

4. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

1. Systèmes différentiels linéaires à coefficients constants . . . . . . . . .

2

2. Exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

3. Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 Sommaire1. Ensembles et applications . . . . . . . . . . . . . . . . . . . . . . .1

2. Les corps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

3. Les anneaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

4. Les polynômes à une indéterminée . . . . . . . . . . . . . . . . . .

9

5. Arithmétique des polynômes . . . . . . . . . . . . . . . . . . . . .

12

6. Les fractions rationnelles . . . . . . . . . . . . . . . . . . . . . . .

19 Ce chapitre contient peu de démonstrations, son rôle est de fixer les notations et de

rappeler les structures algébriques fondamentales, ainsi que les principaux résultats al- gébriques que nous utiliserons dans ce cours. Nous renvoyons le lecteur au cours de première année pour tout approfondissement.

§1 Ensembles et applications

0.1.1.Applications.-SoientAetBdeux ensembles. Uneapplication fdeAdansB

est un procédé qui à tout élementxdeAassocie un élément unique deB, notéf(x). On

notef:A!B, ouAf!B, ou encore f:A!B x!f(x):

On notef(A)l"image de l"ensembleA, définie par

f(A) =fyjy2B;9x2A;tel quey=f(x)g: 1

2CHAPITRE 0. PRÉLIMINAIRES ALGÉBRIQUES

L"image inverse d"un sous-ensembleYBest définie par f

1(Y) =fxjx2A;f(x)2Yg:

Une applicationf:A!Best diteinjectivesi,f(x) =f(y)impliquex=y. Elle est ditesurjectivesif(A) =B,i.e., pour touty2B, il existe unx2Atel quey=f(x). Une application est ditebijectivesi elle est à la fois injective et surjective. Sif:A!Betg:B!Csont deux applications, on notegf, ou encoregf, l"application, ditecomposée, définie par gf:A!C x!g(f(x)): La composée des applications est une opération associative, i.e., étant données trois applicationsAf!Bg!Ch!D, on a h(gf) = (hg)f:

0.1.2.Quelques ensembles fondamentaux de nombres.-Dans tout ce cours, nous

supposons connus les ensembles de nombres suivants et les opérations d"addition, de soustraction, de multiplication et de division sur ces ensembles : ?l"ensemble des entiers naturels, 0, 1, 2,:::, notéN, ?l"ensemble des entiers relatifs, notéZ, formé des entiers naturels et de leurs opposés, ?l"ensemble des rationnels, notéQ, formé des quotientspq , oùpetqsont des entiers relatifs, avecqnon nul, ?l"ensemble des réels, notéR, qui contient les nombres rationnels et les irrationnels, ?l"ensemble des complexes, notéC, formé des nombresa+ib, oùaetbsont des réels etiun complexe vérifianti2=1.

Sipetqsont deux entiers relatifs, on notera

Jp;qK=fa2Zjp6a6qg:

§2 Les corps

Uncorpsest un objet algébrique constitué d"un ensemble et de deux opérations sur cet ensemble, une addition et une multiplication, qui satisfont à certaines relations. Intu- itivement, cette structure est proche de notre intuition de nombres et des opérations que l"on peut leur appliquer. Avant d"énoncer les relations des deux opérations de la structure de corps, rappelons la structure de groupe. suivantes

CHAPITRE 0. PRÉLIMINAIRES ALGÉBRIQUES3

i)l"opération estassociative,i.e., pour tous élémentsa,betcdeG, a?(b?c) = (a?b)?c; ii)il existe un élémentedansG, appeléneutre, tel que, pour tout élémentadeG, a?e=e?a=a; iii)pour tout élémentadeG, il existe un élémentinverse, que nous noteronsa1, tel que a?a1=e=a1?a: Exercice 1.-On définit sur l"ensemble des nombres réels l"opération?en posant a?b=2a+2b:

1.Cette opération est-elle associative?

2.L"opération

a?b=2a+b est-elle associative?

Exercice 2.-

1.Montrer qu"un groupe possède un unique élément neutre.

2.Montrer que dans un groupe, l"inverse d"un élément est unique.

0.2.2.Exemples.-

1)Le groupetrivialest le groupe à un seul élément, l"élément neutre.

quotesdbs_dbs45.pdfusesText_45