[PDF] Feuille de TD 1 - Correction : Interpolation de Lagrange



Previous PDF Next PDF







Chapitre 16 : Algèbre linéaire - WordPresscom

5 Écrire 2X2 +3X −1 comme combinaison linéaire de la famille (1,X,X2) 6 Écrire 2X2 +3X −1 comme combinaison linéaire de la famille (1,X +1,X2 +X +1) Comme on vient de le voir, certaines familles sont très pratiques pour écrire des combinaisons linéaires



Algèbre linéaire et calcul MAT102 - Université de Sherbrooke

la place de l’addition, l’ensemble des polynômes de degré 2 n’est pas un espace vectoriel car le produit de deux polynômes de degré 2 est un polynôme de degré 4 (en général) qui n’appartient pas à l’ensemble de départ des polynômes de degré 2; l’opération (de multiplication) choisie n’est pas une loi interne



ALGÈBRE LINÉAIRE : RÉVISIONS ET COMPLÉMENTS

n[X] des polynômes de degré inférieur ou égal à n est un sous-espace vectoriel de K[X] L’ensemble des polynômes de degré égal à n n’en est pas un Lemme 1 12 Soit (F i) i2I une famille de sous-espaces vectoriels de E Leur intersection F = T i2I F i est un sous-espace vectoriel de E Proposition-DØfinition 1 13 Soit A une partie



Algèbre 4 – Polynômes

3 Découle de la question précédente : V est décroissante, et chute davantage que la multiplicité des racines de P 4 Se restreindre à un compact englobant toutes les racines positives de P 5 Si k est le nombre de 0 dans la suite des coefficients, il y a au plus n−k changements de signe stricts Compter les racines



CHAPITRE 1 Compléments d’algèbre linéaire

Rappelons qu’une famille de polynômes non nuls de K[X] est dite échelonnée en degré si les polynômes de la famille sont de degrés deux à deux distincts Proposition1: Toutes famille de polynômes non nuls de K[X] échelonnée en de-gré est libre Exemple 2 : La famille (Pk)k2N de K[X] où Pk ˘ X2k ¯Xk ¯1 est libre I B -Familles



Cours dalgèbre linéaire, 2 ème année duniversité

férentielle, semi groupes de matrices stochastiques, le cochonnet monstrueux de l'exercice II 4 10, base de Schmidt du tétraèdre régulier, quaternions, simplicité de SO(3), ombres d'un cube, algèbres de von Neumann de dimension nie, inégalité de Mar£enko Pastur, décomposition de Cholewsky pour les arbres, graphes de Dynkin



1 Polynômes et monômes

Il convient de distinguer le polynôme nul, qui est sans monômes (une sommation indexée sur l’ensemble vide est nulle par convention) ; le polynôme nul n’a pas de degré (ou bien on convient de lui attribuer le degré -1 ) Un polynôme de degré nul, c’est donc une constante non nulle



Polynômes - Département de Mathématiques d’Orsay

1 4 Relation de Bezout 1 4 1 SOURCE Etant donné deux polynômes A et B de R[X], le théorème de Bezout affirme que A et B sont premiers entre eux dans R[X] si et seulement si il existe un couple (U,V) de polynômes de R[X] tel que AU + BV = 1 On suppose que A et B sont premiers entre eux a Montrer que, si les couples (U 1,V 1) et (U 2,V



Feuille de TD 1 - Correction : Interpolation de Lagrange

Correction : Ici on procède de la même manière que précédemment en remar- quant que 1 et 2 sont racines de P c On obtient par le même raisonnement que précédemment P c(X) = −(X−2)(X−1)



Exo7 - Cours de mathématiques

Voici des exemples de démonstrations : 4 Il suffit de comparer les deux assertions « non(P et Q)» et « (non P) ou (non Q)» pour toutes les valeurs possibles de P et Q Par exemple si P est vrai et Q est vrai alors « P et Q » est vrai donc « non(P et Q)» est faux; d’autre part (non P) est faux, (non Q) est faux donc « (non P) ou

[PDF] algebre mathématique PDF Cours,Exercices ,Examens

[PDF] algebre pdf PDF Cours,Exercices ,Examens

[PDF] algebre polynome exercice corrigé PDF Cours,Exercices ,Examens

[PDF] algèbre pour les nuls PDF Cours,Exercices ,Examens

[PDF] algébre sur les nombres relatifs 4ème Mathématiques

[PDF] algebre trigonometrie niveau bac PDF Cours,Exercices ,Examens

[PDF] Algèbre, Dérivation Bac Mathématiques

[PDF] Algébre, puissance 3ème Mathématiques

[PDF] Algebre, racine carrée 3ème Mathématiques

[PDF] Algébres 2nde Mathématiques

[PDF] Algébrique 2nde Mathématiques

[PDF] Algébriquement 2nde Mathématiques

[PDF] algebriquement definition PDF Cours,Exercices ,Examens

[PDF] Algérie Histoire 3ème Histoire

[PDF] ALGO 1ère Mathématiques

Faculté des sciences et ingénierie (Toulouse III) Année universitaire

Département de mathématiques 2019-2020

L2 Maths, UE d"Analyse numérique

Feuille de TD 1 - Correction : Interpolation de LagrangeExercice 1.(Identification) On considèrex,y?R4donnés par :x= [-2,0,1,2]ety= [4,0,0,4]. Parmi les poly- nômes suivants, lequel est le polynôme d"interpolationPaux pointsx,y(justifiez votre réponse)?

1.P1(X) =X4-23

X3-3X2+83

X

2.P2(X) =43

X2-43

3.P3(X) =13

X3+X2-43

X. Correction :On ne demande pas ici de calculer le polynôme mais de l"identifier. On va

donc utiliser la caractérisation équivalente (liée à l"unicité) du polynôme d"interpolation

de Lagrange associé aux pointsx,y:

Ppol d"interp. de Lagrange associé àx,y

??(deg(P)63, P(-2) = 4, P(0) = 0, P(1) = 0, P(2) = 4)(1)

Il n"y a plus qu"à trouver le polynôme qui satisfait toutes les propriétés de (1) (l"existence

et l"unicité du théorème du cours garantit qu"il existe et est unique). Le polynômeP1 est de degré 4, il est donc éliminé. Le polynômeP2a un terme constant non nul : il ne s"annule pas en0, il est donc éliminé. Reste le polynômeP3, on vérifie qu"il convient, c"est donc lui.

Exercice 2.(Existence et unicité)

1. Mon trezqu"il existe une infinité de p olynômesde degré 2 don tle graphe pass epar les points(0,0)et(1,0). Correction :Cherchons les polynômes de degré 2p(x) =ax2+bx+ctels que p(0) = 0etp(1) = 0. Ce qui est équivalent au système linéaire ?c= 0 a+b+c= 0 En le résolvant, on obtientp(x) =ax(x-1)sans condition sura, ce qui correspond bien à une infinité de polynômes de degré 2. 1

2.Mon trezqu"il n"existe p asde p olynômede degré 2 passan tpar les p oints(0,1),

(1,4),(2,15)et(3,40). Correction :Comme dans la question précédante, on cherchep(x) =ax2+bx+c tels quep(0) = 1,p(1) = 4,p(2) = 15etp(3) = 40. Ce qui est équivalent au système linéaire ???c= 1 a+b+c= 4

4a+ 2b+c= 15

9a+ 3b+c= 40

En le résolvant, on trouve qu"il n"y a pas de solution, ce qui conclut la question.

Exercice 3.(Construction... Malin ou bourrin?)

Remarque : C"est un bon exercice ici, maintenant que vous avez du recul d"essayer les différentes façons de calculer un polynôme d"interpolation. Calculer les polynômes d"interpolation de Lagrange aux points suivants : a.x= [-1,2,3]ety= [4,4,8] Correction :On calcule la base de Lagrange associée àx: L

0(X) =112

(X-2)(X-3), L1(X) =-13 (X+1)(X-3), L2(X) =14 (X+1)(X-2) et alorsPa(X) = 4L0(X) + 4L1(X) + 8L2(X). IMPORTANT : Il n"est pas demandé/nécessaire/souhaitable de développer les po- lynômes de la base de Lagrange ni même de développerPa, vous allez ajouter des erreurs et le résultat final sera faux. b.x= [-2,-1,0,1]ety= [0,-2,-4,0] Correction :Ici on voit que le polynôme a 2 racines :-2et1. Cela signifie qu"il peut être factorisé par(X+ 2)(X-1), c"est à dire qu"il existe un polynôme Qtel quePb(X) =Q(X)(X+ 2)(X-1). Comme on sait quedeg(Pb)63, alors nécessairementQest de degré inférieur ou égal à1:Q(X) =aX+b. On cherche maintenantaetben utilisant les autres valeurs : P b(-1) =-2, Pb(0) =-4 ce qui équivaut à ?-2(-a+b) =-2 -2b=-4 ce qui donneb= 2, a= 1soitPb(X) = (X+ 2)2(X-1). Bien sûr, on vérifie a posteriori quePbconvient bien. c.x= [-1,0,1,2]ety= [6,2,0,0] 2 Correction :Ici on procède de la même manière que précédemment en remar- quant que1et2sont racines dePc. On obtient par le même raisonnement que précédemment P c(X) =-(X-2)(X-1). REMARQUE : On peut évidemment calculerPbetPcen calculant les polynômes de degré 3 de la base de Lagrange, mais il n"est pas nécessaire de calculer TOUS les polynômes de la base : seuls les polynômes oùPne s"annule pas sont utiles (en l"occurenceL2etL3pourPb,L1etL2pourPc). d.x= [-1,0,1]ety= [1,0,1] Correction :Ici un simple coup d"oeil permet de constater queX2convient, par unicité, on sait donc quePd(X) =X2. e.x= [-3,-1,2,10]ety= [-3,-1,2,10] Correction :Encore plus simple que précédemment, iciPe(X) =X.

Exercice 4.(Utilisation de la caractérisation)

SoitPun polynôme. Montrer que son polynôme d"interpolation aux noeudsxi?R,

06i6n, est le reste de la division euclidienne deppar le polynômeπn(x) = (x-

x

0)(x-x1)...(x-xn).

Correction :Cet exercice vous démunit en général. Dans ce cas, revenons en à la base : que doit-on démontrer? On doit démontrer que le reste de la division euclidienne deP parπn(appelons-leR, on en reparlera plus tard) est LE polynôme d"interpolation de Paux noeudsxi, i= 1...n, c"est à dire, en utilisant la caractérisation du polynôme d"interpolation : deg(R)6n,?i= 1...n, R(xi) =P(xi). Ca paraît pas mais on a beaucoup avancé en disant ça, car on sait maintenant comment partir!

Rappelons maintenant comment est définiR:

deg(R)P(xi) =Q(xi)πn(xi) +R(xi). Or, la définition deπndit que pour touti,πn(xi) = 0. On a donc bienP(xi) =R(xi) pour toutiet la preuve est finie! 3 Exercice 5.(Vandermonde et interpolation de Lagrange...)

Pour(x0,...,xn)?Rn+1, on considère la matrice

V(x0,...,xn) =(

(((((((1x0x20... xn01x1x21... xn1...............

1xnx2n... xnn)

1.

Mon trerque det (V(x0,...,xn)) =?

(i,j),06iV(x0,...,xn) =?

1x1-x0x21-x0x1... xn1-x0xn-11...............

1xn-x0x2n-x0xn... xnn-x0xn-1n?

Ainsi, en développant par rapport à la première ligne, on obtient :

V(x0,...,xn) =?

1-x0x1(x1-x0)... xn-11(x1-x0)

x n-x0xn(xn-x0)... xn-1n(xn-x0)? ce qui donne, par multi-linéarité :

V(x0,...,xn) = (x1-x0)...(xn-x0)?

1xn... xn-1n?

On conclut par récurrence.

2. Soit (y0,...,yn)?Rn+1. Montrer qu"il existe un unique polynômeP?Rntel que P(xi) =yisi et seulement sixi?=xjpour tout(i,j),i?=j. Correction :C"est la preuve qui a été faite en amphi. Je la refais ici. Soit donc(y0,...,yn)?Rn+1, l"existence et l"unicité d"un tel polynôme est équi- valente à l"existence et l"unicité de coefficientsa0,...,antels que (en cherchant un 4 tel polynômePsous la formeP(X) =a0+a1X+···+anXnet en écrivant que pour touti= 0...n, P(xi) =yi) : ???a

0+a1x0+a2x20+···+anxn0=y0

a

0+a1x1+a2x21+···+anxn1=y1

a

0+a1xn+a2x2n+···+anxnn=yn

c"est à dire l"existence et l"unicité d"un vecteur(a0,...,an)?Rn+1tel que (en ré-écrivant le système sous forme matricielle

V(x0,...,xn)(a0,...,an)T= (y0,...,yn)T.

Or, d"après ce qui précède,V(x0,...,xn)est inversible si et seulement si lesxi sont deux à deux distincts. On a donc existence et unicité d"un tel polynôme si et seulement si lesxisont deux à deux distincts.

Exercice 6.(Construction...)

Calculer le polynômePde degré inférieur ou égal à4tel que :

1.P(-2) = 11, P(-1) = 1, P(0) = 1, P(1) = 5, P(2) = 31.

Correction :À moins d"avoir envie de se fader le calcul de l"inverse d"une matrice de Vandermonde de taille 5 ou de calculer les 5 polynômes de la base de Lagrange associée à ces noeuds, le mieux est sans doute ici d"utiliser la base de Newton. On obtient en faisant le tableau des différences divisées

P(X) = 11-10(X+2)+5(X+2)(X+1)+(X+2)(X+1)X+12

(X+2)(X+1)X(X-1).

2.P(-1) = 4, P?(-1) =-4, P(0) = 0, P(1) = 0, P?(1) = 0.

Correction :Un exercice un peu différent ici puisqu"il ne s"agit pas d"interpo- lation de Lagrange : on impose aussi des valeurs aux dérivées dePaux noeuds d"interpolation! Quelle idée!! Comme souvent, deux méthodes sont envisageables ici : la méthode "bourrin" et la méthode "malin". La méthode bourrin consiste à chercher le polynôme sous forme indéterminée et écrire les5équations vérifiées par ses coefficients. On obtiendra comme pour l"in- terpolation de Lagrange un système linéaire de taille 5 à résoudre. Courage! Sinon, on remarque que le polynôme que l"on cherche a le bon goût d"avoir une racine simple : 0 et une racine double : 1 (c"est-à-dire quePETP?s"annulent en 1). On sait donc qu"on peut le factoriser parX(X-1)2et on le cherche donc (puisqu"on sait qu"il est de degré inéfrieur ou égal à 4) sous la forme

P(X) =X(X-1)2(aX+b).

Il ne reste plus qu"à chercheraetben utilisant les valeurs dePet deP?en-1.

On obtient après calcul

?a-b= 1

3a+ 2b=-1

5 ce qui donnea=45 ,b=-15 et donc finalement,P(X) =15

X(X-1)2(4X-1).

Exercice 7.(Base de Lagrange)

Soitx0,...,xn(n+1) réels distincts deux à deux. Pourk? {0,...,n}, on note L k(x) =? j?{0,...,n},j?=kx-xjx k-xj lek-ième polynôme de Lagrange. 1. Mon trerque Lkest un polynôme de degrénvérifiantLk(xi) =δkipour tous k, i? {0,...,n}. 2. En déduire que la famille de p olynômes{Lk}k?{0,...,n}forme une base deRn[X]. Correction :Cet exercice fait l"objet d"une des preuves les plus importantes du cours.

Je vous renvoie donc au cours (ou au poly).

Exercice 8.(examen 2016) (Exercice optionnel, pour aller plus loin) Soientx0= 0< x1< ... < xnet des réels donnésyi,06i6n. On considère le polynôme d"interpolation satisfaisant

P(x0) =y0, P(-xi) =P(xi) =yi, pourtous16i6n.

1.

Mon trerque le p olynômePest pair.

Correction :Cette question est un peu moins classique que le reste du TD, c"est pourquoi cet exercice n"a pas été abordé en TD. Plusieurs d"entre vous m"en ont demandé une correction, la voici. Je la détaille à l"extrême pour en faciliter la compréhension. N"hésitez pas à me contacter pour toute question. Pour simplifier les notations on va noter, pouri= 1...n:x-i=-xi. On a donc alors de l"interpolation avec2n+ 1noeuds :x-i,xipouri= 1...net0. Le polynôme que l"on cherche est donc de degré inférieur ou égal à2n. On rappelle par ailleurs quePn"est pas forcément de degré2n. De plus, le fait d"être de degré pair n"entraine pas quePsoit pair. En effet,P(X) =X2+X+ 1 n"est par exemple ni pair ni impair. Pour être pair,Pdoit être une somme de polynômes pair (qui sont eux même des sommes ou produits de polynômes pairs) :

P(-X) =P(X).

On propose de commencer par se faire une idée de ce qui se passe ici en commençant par le cas oùn= 1. On a alors trois points :0,x1et-x1. On écrit les 3 polynômes de la base de Lagrange associée à0,-x1,x1. ??L

0(X) =-1x

21(X-x1)(X+x1) =-1x

21(X2-x21)

L

1(X) =12x21X(X+x1)

L -1(X) =12x21X(X-x1).

On a alors :

P(X) =y0L0(X) +y1L1(X) +y-1L-1(X) =y0L0(X) +y1(L1(X) +L-1(X)) 6 puisquey-1=y1. On constate alors queL0est pair et quequotesdbs_dbs12.pdfusesText_18