[PDF] Limite dune suite Suites convergentes



Previous PDF Next PDF







L’inverse d’un nombre relatif Ceci «4 ème

inverse sauf le nombre 0 L’inverse d’un nombre écrit en écriture fractionnaire s’obtient en « inversant » son numérateur et son dénominateur a et b sont des nombres relatifs L’inverse de a b est b a et nécessairement l’inverse de b a est a b (b ne peut pas être égal à 0 car on ne peut pas diviser par 0) Exemples : 1) L



Classe virtuelle n°1 4 Inverse d’un nomre

l’inverse d’un nombre non nul ? Définition : Exemples : 1) 0,2 et 5 sont inverses car 0,2 ×5 = 1 On dit que 0,2 est l’inversede 5 et que 5 est l’inverse de



Inverse dune matrice carrée - u-bordeauxfr

(autant d’équations que d’inconnues) Lorsqu’on dispose d’une équation scalaire ax = b, pour déterminer x, il suffit de multiplier (à droite ou à gauche) l’équation par l’inverse de a si



1 LES FRACTIONS (Partie 3)

I Inverse d’un nombre Exemples : 0 n’a pas d’inverse ↑ Définition : L’inverse d’un nombre x différent de 0 est x 1 Propriété : Deux nombres sont



Exo7 - Cours de mathématiques

4 L’inverse d’un élément x 2 R⁄ est x0 ˘ 1 x (car x£ x est bien égal à l’élément neutre 1) L’inverse de x est donc x¡1 ˘ 1 x Notons au passage que nous avions exclu 0 de notre groupe, car il n’a pas d’inverse Ces propriétés font de (R⁄,£) un groupe 5 Enfin x£ y˘ y£x, c’est la commutativité de la



Inverser un arbre pondéré Le théorème des Les données L’arbre

Inverser un arbre pondéré Les données Le théorème des probabilités totales L’arbre inversé Pour déterminer ????( ) on utilise le théorème des probabilités totales A et A̅ forment une partition de l’univers Ω ????( )=????( ∩ )+????( ̅∩ ) ????( )=????( )×????????( )+????( ̅)×????????̅( )



Utiliser l’inverse d’une matrice pour résoudre un système d

Utiliser l’inverse d’une matrice pour résoudre un système d’équations & courbes polynomiales Exercice 1:Dansuneferme,ilyadeslapinsetdespoules Ondénombre58têteset160pattes Combienya-t-ildelapinsdemoinsquedepoules? Solution: –Onchoisitlesdeuxinconnues: – x lenombredelapins; – y lenombredepoules Lenombredetêtesétantde58,onal



Sur l’inverse des matrices - WordPresscom

Sur l’inverse des matrices Erik Thomas∗ Résumé Dans cet article, on montre que si A ∈ GLn (C), il existe un unique polynôme P de degré PA inférieur ou égal à deg(πA)−1 tel que PA (A)=A−1



Limite dune suite Suites convergentes

wn=l alors(v n) est une suite convergente et converge vers l Démonstration : A partir d'un certain rangun⩽vn⩽wn, c'est à dire qu'il existe un entier naturel N tel que sin⩾N alors un⩽vn⩽wn Soit I un intervalle ouvert contenant l lim n→+∞ un=l donc il existe un entier natureln 0 tel que : sin⩾n0 alorsun∈I lim n→+∞

[PDF] nombre opposé définition

[PDF] production écrite le premier jour au lycée

[PDF] inverse math

[PDF] cours d anthropologie

[PDF] philosophie africaine selon hegel pdf

[PDF] cours et exercices de mathematique financiere pdf

[PDF] le capitaine dit a son fils la cabine n°1

[PDF] jdi n°9

[PDF] mai 1993

[PDF] travail de groupe définition

[PDF] demander des informations sur un voyage organisé

[PDF] qu est ce que la geologie

[PDF] les branches de la geologie pdf

[PDF] importance de la geomorphologie

[PDF] definition de la geologie

Limite d'une suite.

Suites convergentes

1. Limite d'une suite.............................................p24. Cas particuliers................................................p9

2. Limites et comparaison....................................p65. Suites monotones.............................................p11

3. Opérations sur les limites.................................p7

Limite d'une suite.

Suites convergentes.

1. Limite d'une suite

1.1. Limite infinie

a) Définitions On dit que la suite(un)admet pour limite + ¥ si et seulement si, pour tout nombre réel A, tous les termes de la suite sont supérieur à A à partir d'un certain rang.

Il existe donc un entier

n0tel que, pour tout entier natureln, supérieur ou égal àn0, on aitun>A (un∈]A;+∞[).

On note

limn→+∞ un=+∞On dit que la suite (un)admet pour limite - ¥ si et seulement si, pour tout nombre réel A, tous les termes de la suite sont inférieur à A à partir d'un certain rang.

Il existe donc un entier

n0tel que, pour tout entier natureln, supérieur ou égal àn0, on aitunOn note limn→+∞ un=-∞b) Exemples un=3n+2. On veut démontrer quelimn→+∞un=+∞ Soit

Aun nombre réel.

un>AÛ3n+2>AÛn>A-2 3 A-2

3est un nombre réel donc compris entre 2 entiers consécutifs.

E (A-2

3)⩽A-2

3 3)+1 E (A-2

3)est la partie entière de

A-2 3.

On choisitn0=E

(A-2 3)+1 Si, n⩾n0alors un>Aet donclimn→+∞ un=+∞.

Limite d'une suite.

Suites convergentes.un=-n2. On veut démontrer quelimn→+∞ un=-∞ Soit

Aun nombre réel.

-n2A<0alors A=-BavecB>0(B=∣A∣)

[0;+∞[E(

On choisit

n⩾n0alors unOn construit un algorithme permettant de résoudre ce programme. Programmer, puis déterminer le rang à partir

duquel un⩾1000.

Avec Algobox :

Limite d'une suite.

Suites convergentes.

Avec une calculatrice TI :un=-n2.

limn→+∞ un=-∞Pour un réel

On construit un algorithme permettant de résoudre ce programme. Programmer, puis déterminer le rang à partir

Avec Algobox :

Avec une calculatrice TI :

1.2. Suites convergentes

a) Définitions lest un nombre réel.

On dit que la suite

(un)admet pour limite l si et seulement si, pour tout intervalle ouvert I, contenant l, contient tous les termes de la suite à partir d'un certain rang.

Limite d'une suite.

Suites convergentes.

On notelimn→+∞un=l

On dit alors que la suite(un)converge vers l et que la suite(un)est une suite convergente. On nomme suite divergente toute suite non convergente. b) Interprétation graphique sur un exemple

1.3. Proposition

Si une suite admet une limite alors celle-ci est unique.

Ce résultat est admis.

1.4. Remarques

a) Il existe des suites n'admettant pas de limite. Par exemple :un=(-1)n. Les termes de rangs pairs sont égaux à 1 et les termes de rangs impairs sont égaux à -1.

Conséquence :

Une suite divergente est une suite admettant une limite infinie ou n'admettant pas de limite. b) Si un=f(n)(pour tout entier naturel n)et sifadmetlpour limite en+∞alors la suite(un)converge versl.

Limite d'une suite.

Suites convergentes.

Exemple :un=3-1

n+1 f(x)=3-1 x+1. fest définie sur[0;+∞[et limx→+∞ f(x)=3Donc, la suite (un)converge vers 3.

Siun=f(n)(pour tout entier naturel n)et si

fadmet+∞ou-∞pour limite en+∞alorslimn→+∞ un=+∞ou limn→+∞ un=-∞Exemple : un=4n2-2 f(x)=4x2-2 fest définie sur[0;+∞[et limx→+∞

Attention, si

fn'admet pas de limite en+∞alors on ne peut pas conclure pour la limite de la suite(un).

Exemple :

f(x)=sin(πx) fest définie sur[0;+∞[etfn'admet pas de limite en+∞. un=f(n)=sin(πn)=0 (un)est la suite constante nulle :limn→+∞un=0

2. Limite et comparaison

2.1. Premier théorème de comparaison

(un)et(vn)deux suites.

Si à partir d'un certain rang

vn⩾unet silimn→+∞un=+∞alorslimn→+∞ vn=+∞.

Démonstration : La démonstration peut être l'objet d'une restitution organisée des connaissances au

baccalauréat.

A partir d'un certain rang

vn⩾un, c'est à dire qu'il existe un entier naturel N tel que sin⩾Nalorsvn⩾un. Soit Aun nombre réel. On sait quelimn→+∞un=0, donc il existe un entiern0tel que :

Limite d'une suite.

Suites convergentes.

Sin⩾n0alorsun>A.

On poseN0le plus grand des entiers naturels

N0=max(N;n0)etn0(on note :N0=max(N;n0)ouN0=Sup(N;n0)) Si, n⩾N0alors vn⩾unetun>Adoncvn>Aetlimn→+∞vn=0.

2.2. Deuxième théorème de comparaison

(un)et(vn)deux suites.

Si à partir d'un certain rang

vn⩽unet silimn→+∞un=-∞alorslimn→+∞ vn=-∞. La démonstration est analogue à la précédente.

2.3. Théorème des gendarmes

(un);(vn);(wn)sont trois suites. lest un nombre réel.

Si à partir d'un certain rang,

un⩽vn⩽wnet silimn→+∞un=limn→+∞wn=lalors(vn)est une suite convergente et converge vers l .

Démonstration :

A partir d'un certain rang

un⩽vn⩽wn, c'est à dire qu'il existe un entier naturel N tel que sin⩾Nalors un⩽vn⩽wn.

Soit I un intervalle ouvert contenant l.

limn→+∞un=ldonc il existe un entier naturel n0tel que : sin⩾n0alorsun∈Ilimn→+∞wn=ldonc il existe un entier naturel n'0tel que : sin⩾n'0alorswn∈IOn pose

N0le plus grand des entiers naturelsN;n0;n'0Si,

n⩾N0alors etun⩽vn⩽wn ;un∈I ;wn∈Idonc [un;wn]ÌI. Et vn∈Idonclimn→+∞vn=l.

3. Opérations sur les limites

Les règles opératoires sur les limites de suites sont les mêmes que celles pour les limites de fonctions.

3.1. Limite d'une somme de suites

Limite d'une suite.

Suites convergentes.

3.2. Limite d'un produit de suites

3.3. Limite de l'inverse d'une suite

3.3. Limite du quotient de deux suites

Limite d'une suite.

Suites convergentes.

4. Cas particuliers

4.1. Suites arithmétiques

a) Rappel(un)est la suite arithmétique de premier terme u0et de raisonrdonc pour tout entier n : un+1=un+ret un=u0+nrb) Limite d'une suite arithmétique

Si r >0 alors

limn→+∞ un=+∞Si r< 0 alors limn→+∞ un=-∞Si r= 0 alors limn→+∞ un=u0Remarque : Pour r=0, (un)est la suite constante égale àu0. Les seules suites arithmétiques convergentes sont les suites constantes (de raison 0).

4.2. Suites géométriques

a) Rappel (un)est la suite géométrique de premier terme u0et de raisonqdonc pour tout entier n : un+1=qunet un=u0qnb) Théorème

Si q >1 alors

limn→+∞ qn=+∞Démonstration :

La démonstration peut être l'objet d'une restitution organisée des connaissances au baccalauréat.

Limite d'une suite.

Suites convergentes.

On posea=q-1>0

q=a+1avec a>0Nous avons démontré dans la leçon 1 (par un raisonnement par récurrence) que pour tout entier naturel n,

(1+a)n⩾1+na

Or, limn→+∞(1+na)=+∞

En utilisant le théorème de comparaison, on peut conclure quelimn→+∞(1+a)n=+∞ soit

limn→+∞ qn=+∞. b) Conséquence

Si 0< q <1 alors

limn→+∞ qn=0Si q= 1 alorslimn→+∞qn=1

Si q= 0 alors

limn→+∞ qn=0Si -1< q <0 alors limn→+∞ qn=0Si q =-1 alors(qn)n'admet pas de limite.

Si q< -1 alors(qn)n'admet pas de limite.

Démonstration

Siquotesdbs_dbs6.pdfusesText_12