Formulaire.pdf









FONCTION LOGARITHME NEPERIEN

ln ln. x y x y. × = +. Remarque : Cette formule permet de transformer un produit en somme. Ainsi celui qui aurait à effectuer 36 x 62
LogTS


formulaire.pdf

Dans tout ce formulaire on ne parle pas du domaine de définition de la formule : par exemple √a sous-entend a 李 0 n ∈ N∗
formulaire


LOGARITHME NEPERIEN

.. x ∈ IR+. * y = ln x. ⇔ y ∈ IR e y. = x traduit le fait que les fonctions exponentielle et logarithme népérien sont réciproques l'une ...
ln


Exponentielle et logarithme

La fonction exponentielle (de base e) et la fonction logarithme (népérien) sont des fonctions réciproques : leurs courbes.
exponentielle et logarithme





FONCTION LOGARITHME NEPERIEN (Partie 1)

La fonction logarithme népérien notée ln
LogTESL


FONCTION EXPONENTIELLE ET FONCTION LOGARITHME

Remarque : Cette formule permet de transformer une somme en produit et réciproquement. Corollaires : Pour tous réels x et y on a : a) exp(− ) =.
Texplog


Primitives avec la fonction logarithme népérien Principe La formule

Primitives avec la fonction logarithme népérien. Principe. La formule de la dérivée de ln u étant u'/u si on cherche la primitive d'un quotient


FONCTION LOGARITHME NÉPÉRIEN

Définition : On appelle logarithme népérien d'un réel strictement positif a l'unique Remarque : Cette formule permet de transformer un produit en.
LogTC





Cours sur les fonctions exponentielles et logarithmes - Bacamaths

On appelle fonction logarithme népérien la bijection réciproque de la fonction exponentielle. on lui préfère parfois la règle suivante (à formuler avec.
expln


Rappels sur les calculs de base 1 Propriété des fonctions e. et ln(.) 2

Soit ex la fonction exponentielle définie sur R qui à un nombre x fait correspondre le nombre y tel que x = ln(y). En voici
rappelsmath


218658 formulaire.pdf

FORMULAIRE

Dans tout ce formulaire on ne parle pas du domaine de d´efinition de la formule : par exemple⎷asous-entenda?0,n?N?,kest une constante.

Logarithme et Exponentielle :elnx= ln(ex) =x

ln1 = 0ln(ab) = ln(a) + ln(b)ln(a/b) = ln(a)-ln(b)ln(1/a) =-ln(a)ln(⎷a) = ln(a)/2ln(aα) =αln(a)

e0= 1ex+y= exeyex-y= ex/eye-x= 1/ex⎷ex= ex/2(ex)y= exy

limx→-∞ex= 0limx→+∞ex= +∞limx→0ln(x) =-∞limx→+∞ln(x) = +∞limx→0xln(x) = 0limx→+∞ln(x)/x= 0

limx→-∞xex= 0limx→+∞ex/x= +∞limx→+∞ln(x)/x= 0limx→-∞xnex= 0limx→+∞ex/xn= +∞limx→+∞ln(x)/xn= 0

D´eriv´ees

Fonctions usuellesFonctions usuellesR`egles de d´erivationExemples f(x)f?(x)f(x)f?(x) k0x1(u+v)?=u?+v?(u×v)?=u?v+uv??3x2lnx??= 6xlnx+ 3x k×xkxkkxk-1(k×u)?=k×u?(uk)?=ku?uk-1?sin3(x)??= 3cosxsin2x 1 x-1x2 1 xn-nxn+1 ?1 u? ?=-u?u2 ?u v? ?=u?v-uv?v2 1-x2 1+x2? ?=-4x(1+x2)2⎷x1

2⎷xlnx1

x(⎷u)?=u?2⎷u(u(v(x)))?=u?(v(x))×v?(x)?sin?e2x???= 2e2xcos?e2x? sinxcosxexex(sinu)?=u?cosu(lnu)?=u?u e -5x3??=-15x2e-5x3 cosx-sinxtanx1 + tan2x(cosu)?=-u?sinu(eu)?=u?eu?sin(x3)??= 3x2cos(x3)

D´eriv´ees partielles

On d´erive une fonction de plusieurs variables par rapport `a une variable en consid´erant les autres variables comme constantes.

∂x(-5x2y3) =-10xy3∂∂y(-5x2y3) =-15x2y2∂∂xe-5x2y3=-10xy3e-5x2y3∂∂ye-5x2y3=-15x2y2e-5x2y3

Matrice Jacobienne, Trace, D´eterminant

Pour un syst`eme?

x?=f(x,y) y ?=g(x,y)on d´efinit laMatrice Jacobienne:A(x,y) =(( ∂f∂x(x,y)∂f∂y(x,y) ∂g ∂x(x,y)∂g∂y(x,y)))

Pour une matriceA=?a b

c d? on d´efinit satracetr(A) =a+det sond´eterminantdet(A) =ad-bc.

Moyenne, Variance, Covariance

Pourune s´erieXdenmesuresxi, on a lamoyenneμ(X) =1nn i=1x i, lavarianceVar(X) =1nn i=1(xi-μ(X))2=μ(X2)-μ(X)2, l"´ecart-typeσ(X) =? Var(X). On aμ(aX+b) =aμ(X) +b,Var(aX+b) =a2Var(X), σ(aX+b) =|a|σ(X). Pour une s´erie dencouples de mesures (xi,yi), on a lecentre de gravit´eG= (μ(X),μ(Y)), lacovarianceCov(X,Y) =1 n? n? i=1(xi-μ(X))(yi-μ(Y))? =μ(XY)-μ(X)μ(Y), lecoefficient de corr´elation lin´eaireρ(x,y) =Cov(x,y) ?Var(x)Var(y), ladroite des moindres carr´esy= ˆax+ˆb,o`u ˆa=Cov(X,Y)

Var(X),ˆb=μ(Y)-ˆaμ(X).

Inertie Totale, Intraclasse, Interclasse

Pourun nuage Γ denpointsMiet de centre de gravit´eGon a l"inertie totaleI(Γ) =1n?d(M1,G)2+d(M2,G)2+···+d(Mn,G)2?.

Si ce nuage est la r´eunion disjointe deksous-nuages Γ1,...,Γk, de centres de gravit´eG1,...,Gk, form´es den1,...,nkpoints

on a l"inertie intraclasse:Iintra= p1I(Γ1) +...+pkI(Γk) o`upi=ni/nest le poids relatif de Γidans Γ et l"inertie interclasse:Iinter= p1d2(G1,G)2+...+pkd2(Gk,G)2, alorsI(Γ) =Iintra+Iinter.

FORMULAIRE

Dans tout ce formulaire on ne parle pas du domaine de d´efinition de la formule : par exemple⎷asous-entenda?0,n?N?,kest une constante.

Logarithme et Exponentielle :elnx= ln(ex) =x

ln1 = 0ln(ab) = ln(a) + ln(b)ln(a/b) = ln(a)-ln(b)ln(1/a) =-ln(a)ln(⎷a) = ln(a)/2ln(aα) =αln(a)

e0= 1ex+y= exeyex-y= ex/eye-x= 1/ex⎷ex= ex/2(ex)y= exy

limx→-∞ex= 0limx→+∞ex= +∞limx→0ln(x) =-∞limx→+∞ln(x) = +∞limx→0xln(x) = 0limx→+∞ln(x)/x= 0

limx→-∞xex= 0limx→+∞ex/x= +∞limx→+∞ln(x)/x= 0limx→-∞xnex= 0limx→+∞ex/xn= +∞limx→+∞ln(x)/xn= 0

D´eriv´ees

Fonctions usuellesFonctions usuellesR`egles de d´erivationExemples f(x)f?(x)f(x)f?(x) k0x1(u+v)?=u?+v?(u×v)?=u?v+uv??3x2lnx??= 6xlnx+ 3x k×xkxkkxk-1(k×u)?=k×u?(uk)?=ku?uk-1?sin3(x)??= 3cosxsin2x 1 x-1x2 1 xn-nxn+1 ?1 u? ?=-u?u2 ?u v? ?=u?v-uv?v2 1-x2 1+x2? ?=-4x(1+x2)2⎷x1

2⎷xlnx1

x(⎷u)?=u?2⎷u(u(v(x)))?=u?(v(x))×v?(x)?sin?e2x???= 2e2xcos?e2x? sinxcosxexex(sinu)?=u?cosu(lnu)?=u?u e -5x3??=-15x2e-5x3 cosx-sinxtanx1 + tan2x(cosu)?=-u?sinu(eu)?=u?eu?sin(x3)??= 3x2cos(x3)

D´eriv´ees partielles

On d´erive une fonction de plusieurs variables par rapport `a une variable en consid´erant les autres variables comme constantes.

∂x(-5x2y3) =-10xy3∂∂y(-5x2y3) =-15x2y2∂∂xe-5x2y3=-10xy3e-5x2y3∂∂ye-5x2y3=-15x2y2e-5x2y3

Matrice Jacobienne, Trace, D´eterminant

Pour un syst`eme?

x?=f(x,y) y ?=g(x,y)on d´efinit laMatrice Jacobienne:A(x,y) =(( ∂f∂x(x,y)∂f∂y(x,y) ∂g ∂x(x,y)∂g∂y(x,y)))

Pour une matriceA=?a b

c d? on d´efinit satracetr(A) =a+det sond´eterminantdet(A) =ad-bc.

Moyenne, Variance, Covariance

Pourune s´erieXdenmesuresxi, on a lamoyenneμ(X) =1nn i=1x i, lavarianceVar(X) =1nn i=1(xi-μ(X))2=μ(X2)-μ(X)2, l"´ecart-typeσ(X) =? Var(X). On aμ(aX+b) =aμ(X) +b,Var(aX+b) =a2Var(X), σ(aX+b) =|a|σ(X). Pour une s´erie dencouples de mesures (xi,yi), on a lecentre de gravit´eG= (μ(X),μ(Y)), lacovarianceCov(X,Y) =1 n? n? i=1(xi-μ(X))(yi-μ(Y))? =μ(XY)-μ(X)μ(Y), lecoefficient de corr´elation lin´eaireρ(x,y) =Cov(x,y) ?Var(x)Var(y), ladroite des moindres carr´esy= ˆax+ˆb,o`u ˆa=Cov(X,Y)

Var(X),ˆb=μ(Y)-ˆaμ(X).

Inertie Totale, Intraclasse, Interclasse

Pourun nuage Γ denpointsMiet de centre de gravit´eGon a l"inertie totaleI(Γ) =1n?d(M1,G)2+d(M2,G)2+···+d(Mn,G)2?.

Si ce nuage est la r´eunion disjointe deksous-nuages Γ1,...,Γk, de centres de gravit´eG1,...,Gk, form´es den1,...,nkpoints

on a l"inertie intraclasse:Iintra= p1I(Γ1) +...+pkI(Γk) o`upi=ni/nest le poids relatif de Γidans Γ et l"inertie interclasse:Iinter= p1d2(G1,G)2+...+pkd2(Gk,G)2, alorsI(Γ) =Iintra+Iinter.