Proofs and Mathematical Reasoning









Logarithms – University of Plymouth

Jan 16 2001 called the logarithm of N to the base a. ... following important rules apply to logarithms. ... Proof that loga MN = loga M + loga N.
PlymouthUniversity MathsandStats logarithms


MATHEMATICS 0110A CHANGE OF BASE Suppose that we have

So we get the following rule: Change of Base Formula: logb a = logc a logc b. Example 1. Express log3 10 using natural logarithms. log3 10 =.
Change of Base


6.2 Properties of Logarithms

integer and rational exponents the full proofs require Calculus. Rule2
S&Z . & .


One-Switch Utility Functions and a Measure of Risk

a proof that does not use either continuity or differentiability. PROPOSITION 2. A utility function satisfies the one-switch rule if and only if it belongs to 





Elementary Functions The logarithm as an inverse function

The positive constant b is called the base (of the logarithm.) Smith (SHSU) We review the three basic logarithm rules we have developed so far.
. Logarithms (slides to )


3.3 The logarithm as an inverse function

naturally flowing out of our rules for exponents. 3.3.1 The meaning of the logarithm The positive constant b is called the base (of the logarithm.).
Lecture Notes . Logarithms


Properties of Exponents and Logarithms

Properties of Logarithms (Recall that logs are only defined for positive values of x.) For the natural logarithm For logarithms base a. 1. lnxy = lnx + lny. 1.
Exponents and Logarithms


Natural Logarithm and Natural Exponential

The function ax is called the exponential function with base a. For example we can prove the first rule in the following way: ▻ ax+y = e(x+y) ln a.
SlidesL





Near-Linear Time Algorithm with Near-Logarithmic Regret Per

Sep 28 2021 logarithmic regret per switch with sub-polynomial complexity per ... Proof. The base algorithm can restart either when we are at.


Proofs and Mathematical Reasoning

may also refer to axioms which are the starting points
Proof and Reasoning


212075 Proofs and Mathematical Reasoning

Proofs and Mathematical Reasoning

University of Birmingham

Author:

AgataStefanowiczSupervisors:

JoeKyle

MichaelGrove

September 2014c

University of Birmingham 2014

Contents

1 Introduction6

2 Mathematical language and symbols 6

2.1 Mathematics is a language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

2.2 Greek alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

2.3 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

2.4 Words in mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

3 What is a proof?9

3.1 Writer versus reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

3.2 Methods of proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

3.3 Implications and if and only if statements . . . . . . . . . . . . . . . . . . . . . . . . . .

10

4 Direct proof11

4.1 Description of method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

4.2 Hard parts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

4.4 Fallacious \proofs" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

4.5 Counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

5 Proof by cases17

5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

5.2 Hard parts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

5.3 Examples of proof by cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

6 Mathematical Induction 19

6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

6.2 Versions of induction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

6.3 Hard parts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

6.4 Examples of mathematical induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

7 Contradiction26

7.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

7.2 Hard parts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

7.3 Examples of proof by contradiction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

8 Contrapositive29

8.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

8.2 Hard parts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

8.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

9 Tips31

9.1 What common mistakes do students make when trying to present the proofs? . . . . .

31

9.2 What are the reasons for mistakes? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

9.3 Advice to students for writing good proofs . . . . . . . . . . . . . . . . . . . . . . . . . .

32

9.4 Friendly reminder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32 c

University of Birmingham 2014

10 Sets34

10.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

10.2 Subsets and power sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

10.3 Cardinality and equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

10.4 Common sets of numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

10.5 How to describe a set? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

10.6 More on cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

10.7 Operations on sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38

10.8 Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

11 Functions41

11.1 Image and preimage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41

11.2 Composition of the functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

42

11.3 Special functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

42

11.4 Injectivity, surjectivity, bijectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

11.5 Inverse function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

44

11.6 Even and odd functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

44

11.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

12 Appendix47c

University of Birmingham 2014

Foreword

Talk to any group of lecturers about how their students handle proof and reasoning when presenting mathematics and you will soon hear a long list of `improvements' they would wish for. And yet, if no one has ever explained clearly, in simple but rigorous terms, what is expected it is hardly a surprise that this is a regular comment. The project that Agata Stefanowicz worked on at the University of Birmingham over the summer of 2014 had as its aim, clarifying and codifying views of sta on these matters and then using these as the basis of an introduction to the basic methods of proof and reasoning in a single document that might help new (and indeed continuing) students to gain a deeper understanding of how we write good proofs and present clear and logical mathematics. Through a judicious selection of examples and techniques, students are presented with instructive examples and straightforward advice on how to improve the way they produce and present good mathematics. An added feature that further enhances the written text is the use of linked videos les that oer the reader the experience of `live' mathematics developed by an expert. And Chapter 9, that looks at common mistakes that are made when students present proofs, should be compulsory reading for every student of mathematics. We are condent that, regardless of ability, all students will nd something to improve their study of mathematics within the pages that follow. But this will be doubly true if they engage with the problems by trying them as they go through this guide.

Michael Grove & Joe Kyle

September 2014c

University of Birmingham 2014

Acknowledgements

I would like to say a big thank you to the Mathematics Support Centre team for the opportunity to work on an interesting project and for the help and advice from the very rst day. Special gratitude goes to Dr Joe Kyle for his detailed comments on my work and tips on creating the document. Thank you also to Michael Grove for his cheerful supervision, fruitful brainstorming conversations and many ideas on improving the document. I cannot forget to mention Dr Simon Goodwin and Dr Corneliu Homan; thank you for your time and friendly advice. The document would not be the same without help from the lecturers at the University of Birmingham who took part in my survey - thank you all. Finally, thank you to my fellow interns, Heather Collis, Allan Cunningham, Mano Sivanthara- jah and Rory Whelan for making the internship an excellent experience.c

University of Birmingham 2014

1 Introduction

From the rst day at university you will hear mention of writing Mathematics in a good style and using \proper English". You will probably start wondering what is the whole deal withwords, when you just wanted to work withnumbers.If, on top of this scary welcome talk, you get a number of denitions and theorems thrown at you in your rst week, where most of them include strange notions that you cannot completely make sense of - do not worry! It is important to notice how big dierence

there is between mathematics at school and at the university. Before the start of the course, many of

us visualise really hard dierential equations, long calculations andx-long digit numbers. Most of us will be struck seeing theorems like \a0 = 0". Now, while it isobviousto everybody, mathematicians are the ones who will not take things for granted and would like to see theproof.

This booklet is intended to give the gist of mathematics at university, present the language used and

the methods of proofs. A number of examples will be given, which should be a good resource for further

Proofs and Mathematical Reasoning

University of Birmingham

Author:

AgataStefanowiczSupervisors:

JoeKyle

MichaelGrove

September 2014c

University of Birmingham 2014

Contents

1 Introduction6

2 Mathematical language and symbols 6

2.1 Mathematics is a language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

2.2 Greek alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

2.3 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

2.4 Words in mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

3 What is a proof?9

3.1 Writer versus reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

3.2 Methods of proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

3.3 Implications and if and only if statements . . . . . . . . . . . . . . . . . . . . . . . . . .

10

4 Direct proof11

4.1 Description of method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

4.2 Hard parts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

4.4 Fallacious \proofs" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

4.5 Counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

5 Proof by cases17

5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

5.2 Hard parts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

5.3 Examples of proof by cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

6 Mathematical Induction 19

6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

6.2 Versions of induction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

6.3 Hard parts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

6.4 Examples of mathematical induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

7 Contradiction26

7.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

7.2 Hard parts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

7.3 Examples of proof by contradiction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

8 Contrapositive29

8.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

8.2 Hard parts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

8.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

9 Tips31

9.1 What common mistakes do students make when trying to present the proofs? . . . . .

31

9.2 What are the reasons for mistakes? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

9.3 Advice to students for writing good proofs . . . . . . . . . . . . . . . . . . . . . . . . . .

32

9.4 Friendly reminder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32 c

University of Birmingham 2014

10 Sets34

10.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

10.2 Subsets and power sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

10.3 Cardinality and equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

10.4 Common sets of numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

10.5 How to describe a set? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

10.6 More on cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

10.7 Operations on sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38

10.8 Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

11 Functions41

11.1 Image and preimage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41

11.2 Composition of the functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

42

11.3 Special functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

42

11.4 Injectivity, surjectivity, bijectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

11.5 Inverse function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

44

11.6 Even and odd functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

44

11.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

12 Appendix47c

University of Birmingham 2014

Foreword

Talk to any group of lecturers about how their students handle proof and reasoning when presenting mathematics and you will soon hear a long list of `improvements' they would wish for. And yet, if no one has ever explained clearly, in simple but rigorous terms, what is expected it is hardly a surprise that this is a regular comment. The project that Agata Stefanowicz worked on at the University of Birmingham over the summer of 2014 had as its aim, clarifying and codifying views of sta on these matters and then using these as the basis of an introduction to the basic methods of proof and reasoning in a single document that might help new (and indeed continuing) students to gain a deeper understanding of how we write good proofs and present clear and logical mathematics. Through a judicious selection of examples and techniques, students are presented with instructive examples and straightforward advice on how to improve the way they produce and present good mathematics. An added feature that further enhances the written text is the use of linked videos les that oer the reader the experience of `live' mathematics developed by an expert. And Chapter 9, that looks at common mistakes that are made when students present proofs, should be compulsory reading for every student of mathematics. We are condent that, regardless of ability, all students will nd something to improve their study of mathematics within the pages that follow. But this will be doubly true if they engage with the problems by trying them as they go through this guide.

Michael Grove & Joe Kyle

September 2014c

University of Birmingham 2014

Acknowledgements

I would like to say a big thank you to the Mathematics Support Centre team for the opportunity to work on an interesting project and for the help and advice from the very rst day. Special gratitude goes to Dr Joe Kyle for his detailed comments on my work and tips on creating the document. Thank you also to Michael Grove for his cheerful supervision, fruitful brainstorming conversations and many ideas on improving the document. I cannot forget to mention Dr Simon Goodwin and Dr Corneliu Homan; thank you for your time and friendly advice. The document would not be the same without help from the lecturers at the University of Birmingham who took part in my survey - thank you all. Finally, thank you to my fellow interns, Heather Collis, Allan Cunningham, Mano Sivanthara- jah and Rory Whelan for making the internship an excellent experience.c

University of Birmingham 2014

1 Introduction

From the rst day at university you will hear mention of writing Mathematics in a good style and using \proper English". You will probably start wondering what is the whole deal withwords, when you just wanted to work withnumbers.If, on top of this scary welcome talk, you get a number of denitions and theorems thrown at you in your rst week, where most of them include strange notions that you cannot completely make sense of - do not worry! It is important to notice how big dierence

there is between mathematics at school and at the university. Before the start of the course, many of

us visualise really hard dierential equations, long calculations andx-long digit numbers. Most of us will be struck seeing theorems like \a0 = 0". Now, while it isobviousto everybody, mathematicians are the ones who will not take things for granted and would like to see theproof.

This booklet is intended to give the gist of mathematics at university, present the language used and

the methods of proofs. A number of examples will be given, which should be a good resource for further


  1. logarithm base change rule proof
  2. log base change rule proof