Théorème de la bijection : exemples de rédaction









Fonctions trigonométriques réciproques

Alors cette fonction " sin " est bijective et on peut définir sa fonction réciproque appelée arc sinus ainsi : arcsin : [-1;1] → [-.
fcts trigo rec


Théorème de la bijection : exemples de rédaction

De plus comme f est strictement croissante
Illustration bijection


Corrigé du TD no 11

Soient f et g deux fonctions continues R → R. On suppose que : (pour un calcul plus détaillé d'une bijection réciproque voir l'exercice suivant).
TD corrige


FONCTION RECIPROQUE D'UNE FONCTION CONTINUE D'UNE

)( )( bf af ≠ donc f est injective de I sur f(I). définition (fonction réciproque). Soit f une fonction bijective de I sur J où J est un intervalle de R. On 
fctsrec





Chapitre V Fonctions arcsin arccos

http://math.univ-lyon1.fr/~tchoudjem/ENSEIGNEMENT/L1/cours10.pdf


II. Fonctions cyclométriques. 1. Introduction 2. La fonction réciproque

4/01/2014 que la fonction initiale soit injective (c'est à dire qu'un réel ne ... la fonction réciproque comme le montre le schéma ci-contre.


Cours : Ensembles et applications

sera la notion d'application (ou fonction) entre deux ensembles. 1. Ensembles L'application g ◦ f est bijective et sa bijection réciproque est.
ch ensembles


Injection surjection

http://exo7.emath.fr/ficpdf/fic00003.pdf





COURS TERMINALE S LA FONCTION LOGARITHME NEPERIEN A

On dit alors que f réalise une bijection de I dans f(I). On admet qu'il existe alors une fonction réciproque de f notée f– 1.
coursTS ln


CHAPITRE 19 Dérivation des fonctions d'une variable réelle

Connaître la définition de fonction dérivée et les dérivées des fonctions Donc f est bijective et sa fonction réciproque (arctan) a pour dérivée :.
chap VP


214463 Théorème de la bijection : exemples de rédaction ECE1-B2015-2016Théorème de la bijection : exemples de rédaction Le but de cette fiche est de faire un point sur le théorème de la bijection. Après un retour sur l"énoncé et sa démonstration, on illustrera l"utilisation de ce théorème en agrégeant les questions rencontrées lors des DS de l"année

2013-2014. Cela devrait vous convaincre, je l"espère, qu"il n"est pas envisa-

geable de perdre des points sur ces questions (toujours les mêmes!).

I. L"énoncé général du théorème

Théorème 1.Théorème de la bijection

On considère une fonctionf:I!Rdéfinie sur unintervalleI.1)fcontinue surI,

2)fstrictement

croissante surI.=)a)f(I)est un intervalle, b)f:I!f(I)est bijective, c)f1:f(I)!Iest continue et strictement croissante surf(I).1)fcontinue surI,

2)fstrictement

décroissante surI.=)a)f(I)est un intervalle, b)f:I!f(I)est bijective, c)f1:f(I)!Iest continue et strictement décroissante surf(I).Démonstration.(Cas où fest strictement croissante) a)f(I)est un intervalle car image d"un intervalle par une fonction continue (c"est une des conséquences du TVI). b)La fonctionf:I!f(I)est surjective puisque son ensemble d"arrivée coïncide avec son image. De plus, commefest strictement croissante, elle est injective.

La fonctionfest donc bijective deIsurf(I).

c)Montrons quef1:f(I)!Iest aussi strictement monotone. Il s"agit de montrer :8(u1;u2)2(f(I))2; u1< u2)f1(u1)< f1(u2).

Soientu1etu2deux éléments def(I). Ainsi :

il existex12Itel queu1=f(x1), il existex22Itel queu2=f(x2). D"oùf1(u1) =f1(f(x1)) =x1etf1(u2) =f1(f(x2)) =x2. L"implication à montrer s"écrit donc :f(x1)< f(x2))x1< x2. On la démontre par contraposée : six1>x2alorsf(x1)>f(x2)carfest crois- sante. Le caractère continu def1, plus technique, n"est pas démontré ici.Remarque Le pointa)est une conséquence du TVI et est essentiel pour démontrer le caractère continu def1. Le théorème de la bijection est donc souvent présenté comme un corollaire du TVI. Toutefois, citer le TVI au lieu du théorème de la bijection sera considéré comme une erreur de rédaction : les hypothèses et résultats du théorème de la bijection sont plus précis. La démonstration du pointc)fait apparaître la propriété suivante. Pour toutx1,x2,éléments deDf:f(x1)< f()< f(x2)f

1strictement croissante==========)x1< < x2Évidemment, cette propriété est aussi vérifiée pour des inégalités larges.

Cette propriété donne aussi souvent lieu à des questions dans les concours.1 ECE1-B2015-2016II. L"énoncé adapté aux questions

Théorème 2.

On considère une fonctionf:I!Rdéfinie sur unintervalleI.1)fcontinue surI,

2)fstrictement

monotone surI.)Alors pour touty2f(I), l"équationy=f(x)admet uneuniquesolutionx2I.Démonstration.

C"est un corollaire direct du théorème

1 La fonctionf:I!f(I)est bijective. On en déduit que tout élément y2f(I)admet un unique antécédentxdans l"intervalleI.Remarque Les questions nécessitant ce théorème sont facilement repérables : " Montrer qu"il existe ununique2:::tel que ... » " Montrer que l"équationf(x) =:::admet uneuniquesolution dans ... » La rédaction correcte d"une telle question demande de la rigueur. Une erreur classique et lourdement pénalisée consiste à oublier de préciser les intervalles considérés (Ietf(I)). Le théorème suivant permet de préciser la nature de l"intervallef(I).

Théorème 3.

SoitIun intervalle d"extrémitésaetb(chacune pouvant être infinie). Soitf:I!Rune fonction continue et strictement monotone surI. a)Alorsf(I)est un intervalle d"extrémitéslimx!af(x)etlimx!bf(x). b)De plus, les intervallesIetf(I)sont de même nature : fermés (comme[1;2],[1;+1[,] 1;2]), ouverts (comme]1;2[,]1;+1[,] 1;2[), ou semi-ouverts (comme]1;2],[1;2[).Tableau récapitulatif. Le tableau suivant permet de faire un point sur les différents types d"inter- valles rencontrés.Nature de l"intervallef(I)ICasfstrictement croissante surICasfstrictement décroissante surI[a;b][f(a);f(b)][f(b);f(a)][a;b[[f(a);limx!bf(x)[]lim x!bf(x);f(a)]]a;b]]lim x!af(x);f(b)][f(b);limx!af(x)[]a;b[]lim x!af(x);limx!bf(x)[]lim x!bf(x);limx!af(x)[Remarque Les tableaux de variation constituent un outil de base dans la rédaction des questions s"appuyant sur le théorème de la bijection. Une fois établi, un tel tableau permet la lecture rapide : des intervallesIde stricte monotonie def, des intervallesf(I)correspondants. Nous considérerons dans les illustrations suivantes que les tableaux de varia- tions sont déjà réalisés. (en cas de doute, se référer aux corrigés précédemment fournis)2

ECE1-B2015-2016III. Illustration sur des exemples

III.1. Énoncé du DS1

Exercice 1

On considère la fonctionfdéfinie par :f(x) =x+ 1 +x1 + lnxx ECE1-B2015-2016Théorème de la bijection : exemples de rédaction Le but de cette fiche est de faire un point sur le théorème de la bijection. Après un retour sur l"énoncé et sa démonstration, on illustrera l"utilisation de ce théorème en agrégeant les questions rencontrées lors des DS de l"année

2013-2014. Cela devrait vous convaincre, je l"espère, qu"il n"est pas envisa-

geable de perdre des points sur ces questions (toujours les mêmes!).

I. L"énoncé général du théorème

Théorème 1.Théorème de la bijection

On considère une fonctionf:I!Rdéfinie sur unintervalleI.1)fcontinue surI,

2)fstrictement

croissante surI.=)a)f(I)est un intervalle, b)f:I!f(I)est bijective, c)f1:f(I)!Iest continue et strictement croissante surf(I).1)fcontinue surI,

2)fstrictement

décroissante surI.=)a)f(I)est un intervalle, b)f:I!f(I)est bijective, c)f1:f(I)!Iest continue et strictement décroissante surf(I).Démonstration.(Cas où fest strictement croissante) a)f(I)est un intervalle car image d"un intervalle par une fonction continue (c"est une des conséquences du TVI). b)La fonctionf:I!f(I)est surjective puisque son ensemble d"arrivée coïncide avec son image. De plus, commefest strictement croissante, elle est injective.

La fonctionfest donc bijective deIsurf(I).

c)Montrons quef1:f(I)!Iest aussi strictement monotone. Il s"agit de montrer :8(u1;u2)2(f(I))2; u1< u2)f1(u1)< f1(u2).

Soientu1etu2deux éléments def(I). Ainsi :

il existex12Itel queu1=f(x1), il existex22Itel queu2=f(x2). D"oùf1(u1) =f1(f(x1)) =x1etf1(u2) =f1(f(x2)) =x2. L"implication à montrer s"écrit donc :f(x1)< f(x2))x1< x2. On la démontre par contraposée : six1>x2alorsf(x1)>f(x2)carfest crois- sante. Le caractère continu def1, plus technique, n"est pas démontré ici.Remarque Le pointa)est une conséquence du TVI et est essentiel pour démontrer le caractère continu def1. Le théorème de la bijection est donc souvent présenté comme un corollaire du TVI. Toutefois, citer le TVI au lieu du théorème de la bijection sera considéré comme une erreur de rédaction : les hypothèses et résultats du théorème de la bijection sont plus précis. La démonstration du pointc)fait apparaître la propriété suivante. Pour toutx1,x2,éléments deDf:f(x1)< f()< f(x2)f

1strictement croissante==========)x1< < x2Évidemment, cette propriété est aussi vérifiée pour des inégalités larges.

Cette propriété donne aussi souvent lieu à des questions dans les concours.1 ECE1-B2015-2016II. L"énoncé adapté aux questions

Théorème 2.

On considère une fonctionf:I!Rdéfinie sur unintervalleI.1)fcontinue surI,

2)fstrictement

monotone surI.)Alors pour touty2f(I), l"équationy=f(x)admet uneuniquesolutionx2I.Démonstration.

C"est un corollaire direct du théorème

1 La fonctionf:I!f(I)est bijective. On en déduit que tout élément y2f(I)admet un unique antécédentxdans l"intervalleI.Remarque Les questions nécessitant ce théorème sont facilement repérables : " Montrer qu"il existe ununique2:::tel que ... » " Montrer que l"équationf(x) =:::admet uneuniquesolution dans ... » La rédaction correcte d"une telle question demande de la rigueur. Une erreur classique et lourdement pénalisée consiste à oublier de préciser les intervalles considérés (Ietf(I)). Le théorème suivant permet de préciser la nature de l"intervallef(I).

Théorème 3.

SoitIun intervalle d"extrémitésaetb(chacune pouvant être infinie). Soitf:I!Rune fonction continue et strictement monotone surI. a)Alorsf(I)est un intervalle d"extrémitéslimx!af(x)etlimx!bf(x). b)De plus, les intervallesIetf(I)sont de même nature : fermés (comme[1;2],[1;+1[,] 1;2]), ouverts (comme]1;2[,]1;+1[,] 1;2[), ou semi-ouverts (comme]1;2],[1;2[).Tableau récapitulatif. Le tableau suivant permet de faire un point sur les différents types d"inter- valles rencontrés.Nature de l"intervallef(I)ICasfstrictement croissante surICasfstrictement décroissante surI[a;b][f(a);f(b)][f(b);f(a)][a;b[[f(a);limx!bf(x)[]lim x!bf(x);f(a)]]a;b]]lim x!af(x);f(b)][f(b);limx!af(x)[]a;b[]lim x!af(x);limx!bf(x)[]lim x!bf(x);limx!af(x)[Remarque Les tableaux de variation constituent un outil de base dans la rédaction des questions s"appuyant sur le théorème de la bijection. Une fois établi, un tel tableau permet la lecture rapide : des intervallesIde stricte monotonie def, des intervallesf(I)correspondants. Nous considérerons dans les illustrations suivantes que les tableaux de varia- tions sont déjà réalisés. (en cas de doute, se référer aux corrigés précédemment fournis)2

ECE1-B2015-2016III. Illustration sur des exemples

III.1. Énoncé du DS1

Exercice 1

On considère la fonctionfdéfinie par :f(x) =x+ 1 +x1 + lnxx